Self-Powered Intelligent Buoy Based on Triboelectric Nanogenerator for Water Level Alarming

被引:43
|
作者
Liang, Xi [1 ,2 ]
Liu, Shijie [1 ,2 ]
Ren, Zewei [3 ]
Jiang, Tao [1 ,2 ]
Wang, Zhong Lin [1 ,2 ,4 ]
机构
[1] Chinese Acad Sci, Beijing Key Lab Micronano Energy & Sensor, Beijing Inst Nanoenergy & Nanosyst, CAS Ctr Excellence Nanosci, Beijing 101400, Peoples R China
[2] Univ Chinese Acad Sci, Sch Nanosci & Technol, Beijing 100049, Peoples R China
[3] Xidian Univ, Acad Adv Interdisciplinary Res, Sch Adv Mat & Nanotechnol, Xian 710126, Peoples R China
[4] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
基金
中国国家自然科学基金;
关键词
charge excitation modules; self-powered systems; triboelectric nanogenerators; water hazard alarming; water wave energy harvesting; FLOOD;
D O I
10.1002/adfm.202205313
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
With increasing global warming, catastrophic floods have threatened people's lives seriously and caused huge economic losses. However, present water hazard alarming systems generally rely on commercial batteries, limiting the intelligent development of disaster prevention planning and maintenance costs. In order to break the limitation, this work applies triboelectric nanogenerators (TENGs) to water hazard alarming. A spherical TENG device with four spiral units is designed to harvest water wave energy, and charge excitation modules (CEMs) are created and integrated with the TENG to improve its electric output. The output current and output power of the spherical TENG with CEMs can reach 15.09 mA and 24.48 mW, which are increased by 250.5 and 4.0 times, compared to the TENG without CEMs. Based on the charge excitation TENG, a self-powered intelligent buoy is constructed. Utilizing the buoy to transmit 433 MHz radio frequency signals to 25 meters away, a water level alarm system and a water level information exchange system with a mobile phone are successfully realized. This work extends applications of TENGs toward water wave energy harvesting and provides a new strategy for water hazard alarming, which is conducive to the fields of carbon neutralization, Internet of Things, and disaster prevention.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] All in One, Self-Powered Bionic Artificial Nerve Based on a Triboelectric Nanogenerator
    Zhang, Qian
    Zhang, Zixuan
    Liang, Qijie
    Shi, Qiongfeng
    Zhu, Minglu
    Lee, Chengkuo
    ADVANCED SCIENCE, 2021, 8 (12)
  • [12] A self-powered microbiosensor system for specific bacteria detection based on triboelectric nanogenerator
    Zhou, Zhou
    Wang, Peng
    Li, Jiawei
    Wang, Congyu
    Chen, Junhuan
    Zhu, Liyang
    Zhu, Haitao
    Zhang, Dun
    NANO ENERGY, 2022, 98
  • [13] Flexible wood-based triboelectric nanogenerator for versatile self-powered sensing
    Liao, Jiaqi
    Wang, Yuanyuan
    Shi, Shitao
    Liu, Chencong
    Sun, Qingfeng
    Shen, Xiaoping
    SUSTAINABLE MATERIALS AND TECHNOLOGIES, 2023, 38
  • [14] A superhydrophobic droplet triboelectric nanogenerator inspired by water strider for self-powered smart greenhouse
    Zhou, Lina
    Zhang, Dongzhi
    Ji, Xinyi
    Zhang, Hao
    Wu, Yan
    Yang, Chunqing
    Xu, Zhenyuan
    Mao, Ruiyuan
    NANO ENERGY, 2024, 129
  • [15] Biomimetic PVA-PVDF-based triboelectric nanogenerator with MXene doping for self-powered water sterilization
    Sun, Xiao
    Dong, Liting
    Liu, Yongjian
    Li, Xinglinmao
    Liu, Jianhua
    Wang, Nannan
    Liu, Ying
    Li, Xiaoyi
    Wang, Daoai
    Chen, Shougang
    MATERIALS TODAY NANO, 2023, 24
  • [16] Utilizing Breakdown Discharge of Self-Powered Triboelectric Nanogenerator to Realize Multimodal Sterilization
    Chen, Junhuan
    Li, Jiawei
    Wang, Peng
    Peng, Yating
    Wang, Congyu
    Wang, Junlei
    Zhang, Dun
    ADVANCED SUSTAINABLE SYSTEMS, 2023, 7 (03)
  • [17] Economical Polypropylene-Based Triboelectric Nanogenerator for Self-Powered Biomechanical Sensor Application
    Sagade Muktar Ahmed, Rumana Farheen
    Kumbarakkara Gangadharan, Abhishek
    Amini, Sebghatullah
    Belur Mohan, Sankarshan
    Madanahalli Ankanathappa, Sangamesha
    Ankanahalli Shankaregowda, Smitha
    Sannathammegowda, Krishnaveni
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2023, 220 (03):
  • [18] A triboelectric nanogenerator based on food packaging Aluminium foil and Parafilm for self-powered electronics
    Sankar, P. Ravi
    Prakash, K.
    Supraja, P.
    Rakesh Kumar, R.
    Mishra, Siju
    Haranath, D.
    PHYSICA SCRIPTA, 2021, 96 (12)
  • [19] Facile and Robust High-Performance Triboelectric Nanogenerator Based on Electronic Waste for Self-Powered Electronics
    Suneetha, Vikram Lakshmi
    Mahesh, Velpula
    Supraja, Potu
    Navaneeth, Madathil
    Kumar, Khanapuram Uday
    Kumar, Rajaboina Rakesh
    ENERGY TECHNOLOGY, 2025, 13 (01)
  • [20] Intelligent Sound Monitoring and Identification System Combining Triboelectric Nanogenerator-Based Self-Powered Sensor with Deep Learning Technique
    Yao, Hongbo
    Wang, Zhixin
    Wu, Yonghui
    Zhang, Yuanzheng
    Miao, Kexin
    Cui, Ming
    Ao, Tianyong
    Zhang, Jiawei
    Ban, Dayan
    Zheng, Haiwu
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (15)