Self-Powered Intelligent Buoy Based on Triboelectric Nanogenerator for Water Level Alarming

被引:43
|
作者
Liang, Xi [1 ,2 ]
Liu, Shijie [1 ,2 ]
Ren, Zewei [3 ]
Jiang, Tao [1 ,2 ]
Wang, Zhong Lin [1 ,2 ,4 ]
机构
[1] Chinese Acad Sci, Beijing Key Lab Micronano Energy & Sensor, Beijing Inst Nanoenergy & Nanosyst, CAS Ctr Excellence Nanosci, Beijing 101400, Peoples R China
[2] Univ Chinese Acad Sci, Sch Nanosci & Technol, Beijing 100049, Peoples R China
[3] Xidian Univ, Acad Adv Interdisciplinary Res, Sch Adv Mat & Nanotechnol, Xian 710126, Peoples R China
[4] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
基金
中国国家自然科学基金;
关键词
charge excitation modules; self-powered systems; triboelectric nanogenerators; water hazard alarming; water wave energy harvesting; FLOOD;
D O I
10.1002/adfm.202205313
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
With increasing global warming, catastrophic floods have threatened people's lives seriously and caused huge economic losses. However, present water hazard alarming systems generally rely on commercial batteries, limiting the intelligent development of disaster prevention planning and maintenance costs. In order to break the limitation, this work applies triboelectric nanogenerators (TENGs) to water hazard alarming. A spherical TENG device with four spiral units is designed to harvest water wave energy, and charge excitation modules (CEMs) are created and integrated with the TENG to improve its electric output. The output current and output power of the spherical TENG with CEMs can reach 15.09 mA and 24.48 mW, which are increased by 250.5 and 4.0 times, compared to the TENG without CEMs. Based on the charge excitation TENG, a self-powered intelligent buoy is constructed. Utilizing the buoy to transmit 433 MHz radio frequency signals to 25 meters away, a water level alarm system and a water level information exchange system with a mobile phone are successfully realized. This work extends applications of TENGs toward water wave energy harvesting and provides a new strategy for water hazard alarming, which is conducive to the fields of carbon neutralization, Internet of Things, and disaster prevention.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Triboelectric Nanogenerator for Self-Powered Gas Sensing
    Zhang, Dongzhi
    Zhou, Lina
    Wu, Yan
    Yang, Chunqing
    Zhang, Hao
    SMALL, 2024, 20 (51)
  • [2] Self-Powered Piezoelectric Actuation Systems Based on Triboelectric Nanogenerator
    Zheng, Zhipeng
    Wang, Binquan
    Yin, Hao
    Chen, Yujie
    Bao, Yi
    Guo, Yiping
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (41)
  • [3] Self-Powered Fire Safety Indicator Based on Fabric-Based Triboelectric Nanogenerator
    Hajra, Sugato
    Panda, Swati
    Kaja, Kushal Ruthvik
    Belal, Mohamed A.
    Vivekananthan, Venkateswaran
    Kim, Hoe Joon
    ENERGY TECHNOLOGY, 2025,
  • [4] A Self-Powered Lantern Based on a Triboelectric-Photovoltaic Hybrid Nanogenerator
    Cao, Ran
    Wang, Jiaona
    Xing, Yi
    Song, Weixing
    Li, Nianwu
    Zhao, Shuyu
    Zhang, Chi
    Li, Congju
    ADVANCED MATERIALS TECHNOLOGIES, 2018, 3 (04):
  • [5] Advances in Marine Self-Powered Vibration Sensor Based on Triboelectric Nanogenerator
    Zou, Yongjiu
    Sun, Minzheng
    Xu, Weipeng
    Zhao, Xin
    Du, Taili
    Sun, Peiting
    Xu, Minyi
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2022, 10 (10)
  • [6] A Self-Powered Dielectrophoretic Microparticle Manipulation Platform Based on a Triboelectric Nanogenerator
    Zhou, Jian
    Tao, Ye
    Xue, Rui
    Ren, Yukun
    ADVANCED MATERIALS, 2023, 35 (01)
  • [7] Self-Powered Drug-Delivery Systems Based on Triboelectric Nanogenerator
    Liu, Zhirong
    Li, Linlin
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2021, 2 (06):
  • [8] Electromagnetic Pulse Powered by a Triboelectric Nanogenerator with Applications in Accurate Self-Powered Sensing and Security
    Zhang, Steven L.
    Roach, Devin J.
    Xu, Sixing
    Wang, Peng
    Zhang, Weiqiang
    Qi, H. Jerry
    Wang, Zhong Lin
    ADVANCED MATERIALS TECHNOLOGIES, 2020, 5 (10)
  • [9] Conformal, graphene-based triboelectric nanogenerator for self-powered wearable electronics
    Chu, Hyenwoo
    Jang, Houk
    Lee, Yongjun
    Chae, Youngcheol
    Ahn, Jong-Hyun
    NANO ENERGY, 2016, 27 : 298 - 305
  • [10] A Compound Yarn Based Wearable Triboelectric Nanogenerator for Self-Powered Wearable Electronics
    Li, Hui
    Zhao, Shuyu
    Du, Xinyu
    Wang, Jiaona
    Cao, Ran
    Xing, Yi
    Li, Congju
    ADVANCED MATERIALS TECHNOLOGIES, 2018, 3 (06):