Entropy based Nearest Neighbor Search in High Dimensions

被引:116
作者
Panigrahy, Rina [1 ]
机构
[1] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
来源
PROCEEDINGS OF THE SEVENTHEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS | 2006年
关键词
D O I
10.1145/1109557.1109688
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we study the problem of finding the approximate nearest neighbor of a query point in the high dimensional space, focusing on the Euclidean space. The earlier approaches use locality-preserving hash functions (that tend to map nearby points to the same value) to construct several hash tables to ensure that the query point hashes to the same bucket as its nearest neighbor in at least one table. Our approach is different we use one (or a few) hash table and hash several randomly chosen points in the neighborhood of the query point showing that at least one of them will hash to the bucket containing its nearest neighbor. We show that the number of randomly chosen points in the neighborhood of the query point q required depends on the entropy of the hash value h(p) of a random point p at the same distance from q at its nearest neighbor, given q and the locality preserving hash function h chosen randomly from the hash family. Precisely, we show that if the entropy I (h(p)vertical bar q, h) = M and g is a bound on the probability that two far-off points will hash to the same bucket, then we can find the approximate nearest neighbor in O(n(rho)) time and near linear (O) over tilde (n) space where p = M/log(l/g). Alternatively we can build a data structure of size O(n1/((1-rho)) to answer queries in 0(d) time. By applying this analysis to the locality preserving hash functions in [17, 21, 6] and adjusting the parameters we show that the c nearest neighbor can be computed in time O(nP) and near linear space where rho approximate to 2.06/c as c becomes large.
引用
收藏
页码:1186 / 1195
页数:10
相关论文
共 29 条
  • [1] Agarwal P. K., 1992, Proceedings of the Twenty-Fourth Annual ACM Symposium on the Theory of Computing, P517, DOI 10.1145/129712.129763
  • [2] [Anonymous], INFORM RETRIEVAL
  • [3] [Anonymous], P S FDN COMP SCI
  • [4] [Anonymous], P 29 ANN ACM S THEOR
  • [5] [Anonymous], 2004, P S COMP GEOM
  • [6] ARYA S, 1994, PROCEEDINGS OF THE FIFTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P573
  • [7] Borodin A., 1999, Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, P312, DOI 10.1145/301250.301330
  • [8] NEAREST NEIGHBOR PATTERN CLASSIFICATION
    COVER, TM
    HART, PE
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1967, 13 (01) : 21 - +
  • [9] DEERWESTER S, 1990, J AM SOC INFORM SCI, V41, P391, DOI 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO
  • [10] 2-9