Monolithic optical microlithography of high-density elastic circuits

被引:266
作者
Zheng, Yu-Qing [1 ]
Liu, Yuxin [2 ]
Zhong, Donglai [1 ]
Nikzad, Shayla [1 ]
Liu, Shuhan [1 ]
Yu, Zhiao [1 ,3 ]
Lw, Deyu [1 ]
Wu, Hung-Chin [1 ]
Zhu, Chenxin [1 ]
Li, Jinxing [1 ]
Tran, Helen [1 ]
Tok, Jeffrey B-H [1 ]
Bao, Zhenan [1 ]
机构
[1] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
关键词
ELECTRONICS; PROTEINS;
D O I
10.1126/science.abh3551
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Polymeric electronic materials have enabled soft and stretchable electronics. However, the lack of a universal micro/nanofabrication method for skin-like and elastic circuits results in low device density and limited parallel signal recording and processing ability relative to silicon-based devices. We present a monolithic optical microlithographic process that directly micropatterns a set of elastic electronic materials by sequential ultraviolet light-triggered solubility modulation. We fabricated transistors with channel lengths of 2 micrometers at a density of 42,000 transistors per square centimeter. We fabricated elastic circuits including an XOR gate and a half adder, both of which are essential components for an arithmetic logic unit. Our process offers a route to realize wafer-level fabrication of complex, high-density, and multilayered elastic circuits with performance rivaling that of their rigid counterparts.
引用
收藏
页码:88 / +
页数:63
相关论文
共 50 条
  • [1] Monolithically integrated high-density vertical organic electrochemical transistor arrays and complementary circuits
    Kim, Jaehyun
    Pankow, Robert M.
    Cho, Yongjoon
    Duplessis, Isaiah D.
    Qin, Fei
    Meli, Dilara
    Daso, Rachel
    Zheng, Ding
    Huang, Wei
    Rivnay, Jonathan
    Marks, Tobin J.
    Facchetti, Antonio
    NATURE ELECTRONICS, 2024, 7 (03) : 234 - 243
  • [2] Liquid Metal-Based High-Density Interconnect Technology for Stretchable Printed Circuits
    Wang, Bei
    Prasad, Sonal
    Hellman, Oskar
    Li, Hao
    Fridberger, Anders
    Hjort, Klas
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (31)
  • [3] Quantitative glycoproteomics of high-density lipoproteins
    Tang, Xinyu
    Wong, Maurice
    Tena, Jennyfer
    Zhu, Chenghao
    Rhodes, Christopher
    Zhou, Qingwen
    Vinjamuri, Anita
    Oloumi, Armin
    Boddu, Sucharita
    Luxardi, Guillaume
    Maverakis, Emanual
    Lebrilla, Carlito B.
    Zivkovic, Angela M.
    RSC ADVANCES, 2022, 12 (29) : 18450 - 18456
  • [4] Stability of discoidal high-density lipoprotein particles
    Maleki, Mohsen
    Fried, Eliot
    SOFT MATTER, 2013, 9 (42) : 9991 - 9998
  • [5] High-Density Lipoproteins: Nature's Multifunctional Nanoparticles
    Kuai, Rui
    Li, Dan
    Chen, Y. Eugene
    Moon, James J.
    Schwendeman, Anna
    ACS NANO, 2016, 10 (03) : 3015 - 3041
  • [6] Materials and devices for high-density, high-throughput micro -electrocorticography arrays
    Xie, Yang
    Peng, Yanxiu
    Guo, Jinhong
    Liu, Muyang
    Zhang, Bozhen
    Yin, Lan
    Ding, He
    Sheng, Xing
    FUNDAMENTAL RESEARCH, 2025, 5 (01): : 17 - 28
  • [7] Micromagnetic Simulation on the Interelement Coupling of High-Density Patterned Film
    Sun, L.
    Wong, P. K. J.
    Zhang, W.
    Zhai, Y.
    Niu, D. X.
    Xu, Y. B.
    Zou, X.
    Zhai, H. R.
    IEEE TRANSACTIONS ON MAGNETICS, 2015, 51 (11)
  • [8] Effects of serum amyloid A on the structure and antioxidant ability of high-density lipoprotein
    Sato, Megumi
    Ohkawa, Ryunosuke
    Yoshimoto, Akira
    Yano, Kouji
    Ichimura, Naoya
    Nishimori, Madoka
    Okubo, Shigeo
    Yatomi, Yutaka
    Tozuka, Minoru
    BIOSCIENCE REPORTS, 2016, 36
  • [9] High-density lipoprotein-like particle formation of Synuclein variants
    Eichmann, Cedric
    Kumari, Pratibha
    Riek, Roland
    FEBS LETTERS, 2017, 591 (02) : 304 - 311
  • [10] Nucleation causes an actin network to fragment into multiple high-density domains
    Chandrasekaran, Aravind
    Giniger, Edward
    Papoian, Garegin A.
    BIOPHYSICAL JOURNAL, 2022, 121 (17) : 3200 - 3212