On corner avoidance of β-adic Halton sequences

被引:0
作者
Hofer, Markus [1 ]
Ziegler, Volker [2 ]
机构
[1] Graz Univ Technol, Inst Math A, Steyrergasse 30, A-8010 Graz, Austria
[2] Austrian Acad Sci, Johann Radon Inst Computat & Appl Math RICAM, Altenbergerstr 69, A-4040 Linz, Austria
基金
奥地利科学基金会;
关键词
Corner avoidance; Uniform distribution; Beta-expansion; Numerical integration; Subspace theorem; SUBSPACE THEOREM; NUMERATION; SYSTEMS;
D O I
10.1007/s10231-015-0499-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the corner avoiding property of s-dimensional beta-adic Halton sequences. After extending this class of point sequences in an intuitive way, we show that the hyperbolic distance between each element of the sequence and the closest corner of [0,1)(s) is O (1/Ns/2+epsilon), where N denotes the index of the element. In our proof, we use tools from Diophantine analysis; more precisely, we apply Schmidt's subspace theorem.
引用
收藏
页码:957 / 975
页数:19
相关论文
共 20 条