On existence of log minimal models

被引:28
作者
Birkar, Caucher [1 ]
机构
[1] Univ Cambridge, Ctr Math Sci, DPMMS, Cambridge CB3 0WB, England
关键词
minimal models; Mori fibre spaces; LMMP with scaling; FLIPS; TERMINATION;
D O I
10.1112/S0010437X09004564
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove that the log minimal model program in dimension d - 1 implies the existence of log minimal models for effective lc pairs (e.g. of non-negative Kodaira dimension) in dimension d. In fact, we prove that the same conclusion follows from a weaker assumption, namely, the log minimal model program with scaling in dimension d - 1. This enables us to prove that effective lc pairs in dimension five have log minimal models. We also give new proofs of the existence of log minimal models for effective lc pairs in dimension four and of the Shokurov reduction theorem.
引用
收藏
页码:919 / 928
页数:10
相关论文
共 23 条
[1]   Termination of (many) 4-dimensional log flips [J].
Alexeev, Valery ;
Hacon, Christopher ;
Kawamata, Yujiro .
INVENTIONES MATHEMATICAE, 2007, 168 (02) :433-448
[2]  
[Anonymous], 1988, J. Amer. Math. Soc.
[3]  
[Anonymous], 1998, BIRATIONAL GEOMETRY
[4]  
[Anonymous], 2004, Proc. Steklov Inst. Math.
[5]  
BIRKAR C, 2009, J ALGEBRA NUMBER THE, V3, P951
[6]  
BIRKAR C, ARXIVMATH0609539V1
[7]  
BIRKAR C, ARXIV09042936V1
[8]  
BIRKAR C, ARXIV09074170V1
[9]   Ascending chain condition for log canonical thresholds and termination of log flips [J].
Birkar, Caucher .
DUKE MATHEMATICAL JOURNAL, 2007, 136 (01) :173-180
[10]   EXISTENCE OF MINIMAL MODELS FOR VARIETIES OF LOG GENERAL TYPE [J].
Birkar, Caucher ;
Cascini, Paolo ;
Hacon, Christopher D. ;
McKernan, James .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 23 (02) :405-468