A Wideband 62-mW 60-GHz FMCW Radar in 28-nm CMOS

被引:40
作者
Kankuppe, Anirudh [1 ,2 ]
Park, Sehoon [1 ,2 ]
Renukaswamy, Pratap Tumkur [1 ,2 ]
Wambacq, Piet [1 ,2 ]
Craninckx, Jan [1 ]
机构
[1] IMEC, B-3001 Leuven, Belgium
[2] Vrije Univ Brussel, Dept Elect & Informat, B-1050 Brussels, Belgium
关键词
Duty cycling; frequency-modulated continuous-wave (FMCW) radar; low power transceiver; mixer first; 60-GHz radar; spillover resilience; TRANSCEIVER; SENSOR;
D O I
10.1109/TMTT.2021.3075437
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article presents an ultralow-power 60-GHz indoor frequency-modulated continuous-wave (FMCW) radar in 28-nm CMOS. The radar front end employs a tunable matching network (TMN), which tracks the chirp frequency and supports a 17% fractional bandwidth, covering unlicensed 60-GHz bands (57-66 GHz). A frequency sixtupler chain (x6) in the transmitter (TX) provides an output power of 8.1 (Wm while achieving >20% dc-to-RF efficiency. A mixer-first receiver (RX) front end followed by a source degenerated high-pass (HP) filter suppresses TX-to-RX leakage (spillover) and induces minimal spillover-to-target intermodulation. The RX exhibits a 10.5-dB noise figure (NF) at 60 GHz with only 5.6-mW power consumption, making it suitable for an MIMO array. The radar IC with its DSP platform fully demonstrates its capability in indoor sensing scenarios. The duty-cycling compatible design enabled by the 1-mu s radar startup time consumes 62 mW/18 mW in continuous mode/6.25% duty-cycled mode, a record low dc power compared to the state-of-the-art radars in this frequency range.
引用
收藏
页码:2921 / 2935
页数:15
相关论文
共 34 条
[1]  
Andrews Caroline, 2010, 2010 IEEE International Solid-State Circuits Conference (ISSCC), P46, DOI 10.1109/ISSCC.2010.5434056
[2]   On some direct evidence for downward atmospheric reflection of electric rays. [J].
Appleton, EV ;
Barnett, MAF .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-CONTAINING PAPERS OF A MATHEMATICAL AND PHYSICAL CHARACTER, 1925, 109 (752) :621-641
[3]  
Binns P., 1992, P IEE C AUT SENS, P1
[4]  
Bui L. Q., 1991, 1991 IEEE MTT-S International Microwave Symposium Digest (91CH2870-4), P1147, DOI 10.1109/MWSYM.1991.147220
[5]  
Detlefsen J., 1982, P 12 EUR MICR C OCT, P107
[6]  
Edvardsson O., 1979, Proceedings of the 9th European Microwave Conference. Microwave 79, P712
[7]  
Giannini V, 2019, ISSCC DIG TECH PAP I, V62, P164, DOI 10.1109/ISSCC.2019.8662386
[8]   A 160 GHz Pulsed Radar Transceiver in 65 nm CMOS [J].
Ginsburg, Brian P. ;
Ramaswamy, Srinath M. ;
Rentala, Vijay ;
Seok, Eunyoung ;
Sankaran, Swaminathan ;
Haroun, Baher .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2014, 49 (04) :984-995
[9]   AN APPARATUS FOR THE DETECTION OF WEAK IONOSPHERIC ECHOES [J].
GNANALINGAM, S .
PROCEEDINGS OF THE INSTITUTION OF ELECTRICAL ENGINEERS-LONDON, 1954, 101 (72) :243-248
[10]   Ultracompact 160-GHz FMCW Radar MMIC With Fully Integrated Offset Synthesizer [J].
Hitzler, Martin ;
Saulig, Stefan ;
Boehm, Linus ;
Mayer, Winfried ;
Winkler, Wolfgang ;
Uddin, Nasir ;
Waldschmidt, Christian .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2017, 65 (05) :1682-1691