The search for leakage-free entangling Fibonacci braiding gates

被引:5
作者
Cui, Shawn X. [1 ,2 ,7 ,8 ]
Tian, Kevin T. [3 ]
Vasquez, Jennifer F. [4 ]
Wang, Zhenghan [3 ,5 ]
Wong, Helen M. [6 ]
机构
[1] Stanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94305 USA
[2] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
[3] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
[4] Univ Scranton, Dept Math, Scranton, PA 18510 USA
[5] Microsoft Stn Q, Santa Barbara, CA 93106 USA
[6] Claremont Mckenna Coll, Dept Math Sci, Claremont, CA 91711 USA
[7] Purdue Univ, Dept Math, W Lafayette, IN 47906 USA
[8] Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47906 USA
关键词
Fibonacci anyon; braiding gate; leakage free; entangling; QUANTUM; UNIVERSAL;
D O I
10.1088/1751-8121/ab488e
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is an open question if there are leakage-free entangling Fibonacci braiding gates. In this article, we give a construction of a large family of leakage-free braiding gates which are then proved to be non-entangling. We also conducted brute-force numerical searches for braids with a word-length up to seven and found no leakage-free entangling gates. These suggest the negative for the conjecture. On the other hand, we provide a much simpler protocol to generate approximately leakage-free entangling Fibonacci braiding gates than existing algorithms in the literature.
引用
收藏
页数:14
相关论文
共 20 条
  • [1] Birman J S, 1976, B AM MATH SOC, V82, P42
  • [2] Systematically generated two-qubit anyon braids
    Carnahan, Caitlin
    Zeuch, Daniel
    Bonesteel, N. E.
    [J]. PHYSICAL REVIEW A, 2016, 93 (05)
  • [3] Universal quantum computation with weakly integral anyons
    Cui, Shawn X.
    Hong, Seung-Moon
    Wang, Zhenghan
    [J]. QUANTUM INFORMATION PROCESSING, 2015, 14 (08) : 2687 - 2727
  • [4] Universal quantum computation with metaplectic anyons
    Cui, Shawn X.
    Wang, Zhenghan
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (03)
  • [5] Dawson CM, 2006, QUANTUM INFORM COMPU, V6, P81
  • [6] Delaney Colleen, 2016, Rev.colomb.mat., V50, P211
  • [7] The two-eigenvalue problem and density of Jones representation of braid groups
    Freedman, MH
    Larsen, MJ
    Wang, ZH
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 228 (01) : 177 - 199
  • [8] A modular functor which is universal for quantum computation
    Freedman, MH
    Larsen, M
    Wang, ZH
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 227 (03) : 605 - 622
  • [9] Fibonacci Topological Superconductor
    Hu, Yichen
    Kane, C. L.
    [J]. PHYSICAL REVIEW LETTERS, 2018, 120 (06)
  • [10] Asymptotically Optimal Topological Quantum Compiling
    Kliuchnikov, Vadym
    Bocharov, Alex
    Svore, Krysta M.
    [J]. PHYSICAL REVIEW LETTERS, 2014, 112 (14)