PdIn intermetallic nanoparticles for the Hydrogenation of CO2 to Methanol

被引:186
作者
Garcia-Trenco, Andres [1 ]
Regoutz, Anna [2 ]
White, Edward R. [3 ]
Payne, David J. [2 ]
Shaffer, Milo S. P. [3 ]
Williams, Charlotte K. [1 ]
机构
[1] Univ Oxford, Chem Res Lab, Chem Res Lab, 12 Mansfield Rd, Oxford OX1 3TA, England
[2] Imperial Coll London, Dept Mat, London SW7 2AZ, England
[3] Imperial Coll London, Dept Chem, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
Pdln catalysts; Pdln intermetallics; Nanoparticles; Methanol synthesis; CO2; hydrogenation; In2O3; LIQUID-PHASE METHANOL; STEAM REFORMING CATALYSTS; CARBON-DIOXIDE; IN-SITU; SUPPORTED PALLADIUM; SURFACE-PROPERTIES; ACTIVE-SITE; CU/ZNO; OXIDE; GA;
D O I
10.1016/j.apcatb.2017.07.069
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Direct hydrogenation of CO2 to methanol could offer significant environmental benefits, if efficient catalysts can be developed. Here, bimetallic Pd-In nanoparticles show good performance as catalysts for this reaction. Unsupported nanoparticles are synthesised by the thermal decomposition of Pd(acetate)2 and In(acetate)3 precursors in a high boiling point solvent (squalane), followed by reduction using dilute H-2 gas (210 degrees C). Adjusting the ratio of the two metallic precursors allow access to 5-10nm nanoparticles with different phase compositions, including metallic Pd(0), In2O3 and intermetallic Pdln. Liquid phase methanol synthesis experiments (50 bar, 210 degrees C, H-2:CO2 =3:1) identify the intermetallic Pdln nanoparticles as the most efficient. The catalysts exhibit around 70% higher methanol rates (normalised to the overall molar metal content) compared to the conventional heterogeneous Cu/ZnO/Al2O3 catalyst (900 and 540 p,mol mmol(PdlnorCuZnAl)(-1)h(-1), respectively). In addition, the optimum Pd/In catalyst shows an improved methanol selectivity over the whole temperature range studied (190-270 degrees C), reaching >80% selectivity at 270 degrees C, compared to only 45% for the reference Cu/ZnO/Al2O3 catalyst. Experiments showed an improvement in stability; the methanol production rate declined by 20% after 120 h run for the optimum Pdln-based compared with 30% for the Cu/ZnO/Al2O3 catalyst (after 25 h). The optimum catalyst consists of similar to 8 nm nanoparticles comprising a surface In-enriched Pdln intermetallic phase as characterised by XRD, HR-TEM, STEM-EDX and XPS. Post-catalysis analysis of the optimum catalyst shows that the same Pdln bimetallic phase is retained with only a slight increase in the nanoparticle size. (C) 2017 The Authors. Published by Elsevier B.V.
引用
收藏
页码:9 / 18
页数:10
相关论文
共 67 条
[31]   X-RAY PHOTOELECTRON AUGER ELECTRON SPECTROSCOPIC STUDIES OF TIN AND INDIUM METAL FOILS AND OXIDES [J].
LIN, AWC ;
ARMSTRONG, NR ;
KUWANA, T .
ANALYTICAL CHEMISTRY, 1977, 49 (08) :1228-1235
[32]   From Oxide-Supported Palladium to Intermetallic Palladium Phases: Consequences for Methanol Steam Reforming [J].
Lorenz, Harald ;
Rameshan, Christoph ;
Bielz, Thomas ;
Memmel, Norbert ;
Stadlmayr, Werner ;
Mayr, Lukas ;
Zhao, Qian ;
Soisuwan, Soipatta ;
Kloetzer, Bernhard ;
Penner, Simon .
CHEMCATCHEM, 2013, 5 (06) :1273-1285
[33]   Pd-In2O3 interaction due to reduction in hydrogen: Consequences for methanol steam reforming [J].
Lorenz, Harald ;
Turner, Stuart ;
Lebedev, Oleg I. ;
Van Tendeloo, Gustaaf ;
Kloetzer, Bernhard ;
Rameshan, Christoph ;
Pfaller, Kristian ;
Penner, Simon .
APPLIED CATALYSIS A-GENERAL, 2010, 374 (1-2) :180-188
[34]   Indium Oxide as a Superior Catalyst for Methanol Synthesis by CO2 Hydrogenation [J].
Martin, Oliver ;
Martin, Antonio J. ;
Mondelli, Cecilia ;
Mitchell, Sharon ;
Segawa, Takuya F. ;
Hauert, Roland ;
Drouilly, Charlotte ;
Curulla-Ferre, Daniel ;
Perez-Ramirez, Javier .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (21) :6261-6265
[35]  
McGuirk G.M., 2014, J CHEM PHYS, V141
[36]   Methanol steam reforming over bimetallic Pd-In/Al2O3 catalysts in a microstructured reactor [J].
Men, Yong ;
Kolb, Gunther ;
Zapf, Ralf ;
O'Connell, Martin ;
Ziogas, Athanassios .
APPLIED CATALYSIS A-GENERAL, 2010, 380 (1-2) :15-20
[37]   On the issue of the active site and the role of ZnO in Cu/ZnO methanol synthesis catalysts [J].
Nakamura, J ;
Choi, Y ;
Fujitani, T .
TOPICS IN CATALYSIS, 2003, 22 (3-4) :277-285
[38]   Controlled synthesis and catalytic properties of supported In-Pd intermetallic compounds [J].
Neumann, Matthias ;
Teschner, Detre ;
Knop-Gericke, Axel ;
Reschetilowski, Wladimir ;
Armbruester, Marc .
JOURNAL OF CATALYSIS, 2016, 340 :49-59
[39]   PHOTOELECTRON AND AUGER-SPECTROSCOPY OF INDIUM HALIDES, OXIDE AND SULFIDE COMPOUNDS [J].
NICHOLS, GD ;
ZATKO, DA .
INORGANIC & NUCLEAR CHEMISTRY LETTERS, 1979, 15 (11-1) :401-404
[40]  
Olah G., 2011, OIL GAS METHANOL EC