New experimental evidence for nature of the band gap of GeSn alloys

被引:3
|
作者
Eales, Timothy D. [1 ]
Marko, Igor P. [1 ]
Ghetmiri, Seyed A. [2 ]
Du, Wei [2 ]
Zhou, Yiyin [2 ]
Yu, Shui-Qing [2 ]
Margetis, Joe [3 ]
Tolle, John [3 ]
Schulz, Stefan [4 ]
O'Halloran, Edmond [4 ]
O'Reilly, Eoin P. [4 ]
Sweeney, Stephen J. [1 ]
机构
[1] Univ Surrey, Guildford, Surrey, England
[2] Univ Arkansas, Fayetteville, AR 72701 USA
[3] ASM Amer Inc, Phoenix, AZ USA
[4] Tyndall Natl Inst, Cork, Ireland
来源
SILICON PHOTONICS XII | 2017年 / 10108卷
关键词
D O I
10.1117/12.2252724
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
To harness the advanced fabrication capabilities and high yields of the electronics industry for photonics, monolithic growth and CMOS compatibility are required. One promising candidate which fulfils these conditions is GeSn. Introducing Sn lowers the energy of the direct G valley relative to the indirect L valley. The movement of the conduction band valleys with Sn concentration is critical for the design of efficient devices; however, a large discrepancy exists in the literature for the Sn concentration at which GeSn becomes a direct band gap. We investigate the bandgap character of GeSn using hydrostatic pressure which reversibility modifies the bandstructure. In this work we determine the movement of the band-edge under pressure using photocurrent measurements. For a pure Ge sample, the movement of the band-edge is dominated by the indirect L valley with a measured pressure coefficient of 4.26 +/- 0.05 meV/kbar. With increasing Sn concentration there is evidence of band mixing effects, with values of 9.4 +/- 0.3 meV/kbar and 11.1 +/- 0.2 meV/kbar measured for 6% and 8% Sn samples. For a 10% Sn sample the pressure coefficient of 13 +/- 0.5 meV/kbar is close to the movement of the direct bandgap of Ge, indicating predominately direct G-like character for this GeSn alloy. This further suggests a gradual transition from indirect to direct like behaviour in the alloy as also evidenced from theoretical calculations. The implications of this in terms of optimising device performance will be discussed in further detail at the conference.
引用
收藏
页数:1
相关论文
共 50 条
  • [1] The nature of the band gap of GeSn alloys
    Schulz, Stefan
    Broderick, Christopher A.
    O'Halloran, Edmond J.
    O'Reilly, Eoin P.
    2018 18TH INTERNATIONAL CONFERENCE ON NUMERICAL SIMULATION OF OPTOELECTRONIC DEVICES (NUSOD 2018), 2018, : 39 - 40
  • [2] A Direct Band Gap GeSn Laser on Si
    Geiger, R.
    Wirths, S.
    Buca, D.
    Sigg, H.
    von den Driesch, N.
    Ikonic, Z.
    Hartmann, J. M.
    Faist, J.
    Mantl, S.
    Gruetzmacher, D.
    2015 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2015,
  • [3] Nature of the band gap in Zn1-xBexSe alloys
    Chauvet, C
    Tournié, E
    Faurie, JP
    PHYSICAL REVIEW B, 2000, 61 (08) : 5332 - 5336
  • [4] Nature of the fundamental band gap in GaNxP1-x alloys
    Shan, W
    Walukiewicz, W
    Yu, KM
    Wu, J
    Ager, JW
    Haller, EE
    Xin, HP
    Tu, CW
    APPLIED PHYSICS LETTERS, 2000, 76 (22) : 3251 - 3253
  • [5] Band gap renormalization in n-type GeSn alloys made by ion implantation and flash lamp annealing
    Prucnal, S.
    Berencen, Y.
    Wang, M.
    Rebohle, L.
    Kudrawiec, R.
    Polak, M.
    Zviagin, V.
    Schmidt-Grund, R.
    Grundmann, M.
    Grenzer, J.
    Turek, M.
    Drozdziel, A.
    Pyszniak, K.
    Zuk, J.
    Helm, M.
    Skorupa, W.
    Zhou, S.
    JOURNAL OF APPLIED PHYSICS, 2019, 125 (20)
  • [6] Band-gap and strain engineering in GeSn alloys using post-growth pulsed laser melting
    Steuer, O.
    Schwarz, D.
    Oehme, M.
    Schulze, J.
    Kudrawiec, R.
    Fischer, I. A.
    Heller, R.
    Huebner, R.
    Khan, M. M.
    Georgiev, Y. M.
    Zhou, S.
    Helm, M.
    Prucnal, S.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2023, 35 (05)
  • [7] Experimental Evidence of the Band Gap Formation in Rotors With Longitudinal Periodicity
    Lamas, Patrick B.
    Nicoletti, Rodrigo
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2023, 145 (02):
  • [8] A new model of discribing the band gap bowing of Ill nitride alloys
    Zhao, Chuanzhen
    Yu, Liyuan
    Tang, Chunxiao
    Li, Ming
    Zhang, Jianxin
    SOFT MAGNETIC MATERIALS, 2011, 298 : 7 - +
  • [9] Band gap reduction in InAsN alloys
    Shih, DK
    Lin, HH
    Sung, LW
    Chu, TY
    Yang, TR
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2003, 42 (2A): : 375 - 383
  • [10] Band gap reduction in InAsN alloys
    Lin, H.-H. (hhlin@cc.ee.ntu.edu.tw), 1600, Japan Society of Applied Physics (42):