Enhanced optical nonlinearities in CMOS-compatible ultra-silicon-rich nitride photonic crystal waveguides

被引:15
作者
Sahin, E. [1 ,2 ]
Ooi, K. J. A. [1 ]
Chen, G. F. R. [1 ]
Ng, D. K. T. [3 ]
Png, C. E. [2 ]
Tan, D. T. H. [1 ]
机构
[1] SUTD, Photon Devices & Syst Grp, Engn Prod Dev, Singapore 487372, Singapore
[2] ASTAR, Dept Elect & Photon, Inst High Performance Comp, Singapore 138632, Singapore
[3] Agcy Sci Technol & Res, Data Storage Inst, Singapore 138634, Singapore
基金
新加坡国家研究基金会;
关键词
SLOW-LIGHT; ABSORPTION;
D O I
10.1063/1.5003816
中图分类号
O59 [应用物理学];
学科分类号
摘要
We present the design, fabrication, and characterization of photonic crystal waveguides (PhCWs) on an ultra-silicon-rich nitride (USRN) platform, with the goal of augmenting the optical nonlinearities. The design goals are to achieve an optimized group index curve on the PhCW band edge with a non-membrane PhCW with symmetric SiO2 undercladding and overcladding, so as to maintain back-end CMOS compatibility and better structural robustness. Linear optical characterization, as well as non-linear optical characterization of PhCWs on ultra-silicon-rich nitride is performed at the telecommunication wavelengths. USRN's negligible two-photon absorption and free carrier losses at the telecommunication wavelengths ensure that there is no scaling of two-photon related losses with the group index, thus maintaining a high nonlinear efficiency. Self-phase modulation experiments are performed using a 96.6 mu m PhCW. A 1.5 pi phase shift is achieved with an input peak power of 2.5W implying an effective nonlinear parameter of 1.97 x 10(4) (W m)(-1). This nonlinear parameter represents a 49 x enhancement in the nonlinear parameter from the slow light effect, in good agreement with expected scaling from the measured group index. Published by AIP Publishing.
引用
收藏
页数:5
相关论文
共 30 条
  • [1] Agrawal GP, 2013, 2013 OPTICAL FIBER COMMUNICATION CONFERENCE AND EXPOSITION AND THE NATIONAL FIBER OPTIC ENGINEERS CONFERENCE (OFC/NFOEC)
  • [2] Slow light in photonic crystals
    Baba, Toshihiko
    [J]. NATURE PHOTONICS, 2008, 2 (08) : 465 - 473
  • [3] Observation of soliton compression in silicon photonic crystals
    Blanco-Redondo, A.
    Husko, C.
    Eades, D.
    Zhang, Y.
    Li, J.
    Krauss, T. F.
    Eggleton, B. J.
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [4] Wideband nonlinear spectral broadening in ultra-short ultra - silicon rich nitride waveguides
    Choi, Ju Won
    Chen, George F. R.
    Ng, D. K. T.
    Ooi, Kelvin J. A.
    Tan, Dawn T. H.
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [5] Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides
    Corcoran, B.
    Monat, C.
    Grillet, C.
    Moss, D. J.
    Eggleton, B. J.
    White, T. P.
    O'Faolain, L.
    Krauss, T. F.
    [J]. NATURE PHOTONICS, 2009, 3 (04) : 206 - 210
  • [6] Photonic crystal waveguides on silicon rich nitride platform
    Debnath, Kapil
    Bucio, Thalia Dominguez
    Al-Attili, Abdelrahman
    Khokhar, All Z.
    Saito, Shinichi
    Gardes, Frederic Y.
    [J]. OPTICS EXPRESS, 2017, 25 (04): : 3214 - 3221
  • [7] Chalcogenide photonics
    Eggleton, Benjamin J.
    Luther-Davies, Barry
    Richardson, Kathleen
    [J]. NATURE PHOTONICS, 2011, 5 (03) : 141 - 148
  • [8] Non-trivial scaling of self-phase modulation and three-photon absorption in III-V photonic crystal waveguides
    Husko, Chad
    Combrie, Sylvain
    Tran, Quynh Vy
    Raineri, Fabrice
    Wong, Chee Wei
    De Rossi, Alfredo
    [J]. OPTICS EXPRESS, 2009, 17 (25): : 22442 - 22451
  • [9] Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis
    Johnson, SG
    Joannopoulos, JD
    [J]. OPTICS EXPRESS, 2001, 8 (03): : 173 - 190
  • [10] Slow light in photonic crystal waveguides
    Krauss, T. F.
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (09) : 2666 - 2670