LINEARLY IMPLICIT ENERGY-PRESERVING FOURIER PSEUDOSPECTRAL SCHEMES FOR THE COMPLEX MODIFIED KORTEWEG-DE VRIES EQUATION

被引:0
|
作者
Yan, J. L. [1 ]
Zheng, L. H. [2 ]
Zhu, L. [3 ]
Lu, F. Q. [4 ]
机构
[1] Wuyi Univ, Dept Math & Comp, Wu Yi Shan 354300, Peoples R China
[2] 1 Middle Sch Nanping, Dept Informat & Comp Technol, Nanping 353000, Peoples R China
[3] Jiangsu Univ Sci & Technol, Dept Math & Phys, Zhenjiang 212003, Jiangsu, Peoples R China
[4] Changzhou Inst Technol, Changzhou 213032, Peoples R China
来源
ANZIAM JOURNAL | 2020年 / 62卷 / 03期
基金
中国国家自然科学基金;
关键词
mass; energy; invariant energy quadratization method; Fourier pseudospectral method; complex modified Korteweg-de Vries equation; NUMERICAL-SOLUTION; WAVES;
D O I
10.1017/S1446181120000218
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose two linearly implicit energy-preserving schemes for the complex modified Korteweg-de Vries equation, based on the invariant energy quadratization method. First, a new variable is introduced and a new Hamiltonian system is constructed for this equation. Then the Fourier pseudospectral method is used for the space discretization and the Crank-Nicolson leap-frog schemes for the time discretization. The proposed schemes are linearly implicit, which is only needed to solve a linear system at each time step. The fully discrete schemes can be shown to conserve both mass and energy in the discrete setting. Some numerical examples are also presented to validate the effectiveness of the proposed schemes.
引用
收藏
页码:256 / 273
页数:18
相关论文
共 50 条
  • [1] Linearly implicit and second-order energy-preserving schemes for the modified Korteweg-de Vries equation
    Yan, Jinliang
    Zhu, Ling
    Lu, Fuqiang
    Zheng, Sihui
    NUMERICAL ALGORITHMS, 2022, 91 (04) : 1511 - 1546
  • [2] Linearly implicit and second-order energy-preserving schemes for the modified Korteweg-de Vries equation
    Jinliang Yan
    Ling Zhu
    Fuqiang Lu
    Sihui Zheng
    Numerical Algorithms, 2022, 91 : 1511 - 1546
  • [3] High-order Linearly Energy-preserving Compact Finite Difference Schemes for the Korteweg-de Vries Equation
    Yan, Jin-Liang
    Zheng, Liang-Hong
    Lu, Fu-Qiang
    Li, Wen-Jun
    ENGINEERING LETTERS, 2022, 30 (02)
  • [4] High-order Linearly Energy-preserving Compact Finite Difference Schemes for the Korteweg-de Vries Equation
    Yan, Jin-Liang
    Zheng, Liang-Hong
    Lu, Fu-Qiang
    Li, Wen-Jun
    Engineering Letters, 2022, 30 (02): : 681 - 691
  • [5] Multisymplectic Schemes for the Complex Modified Korteweg-de Vries Equation
    Aydin, A.
    Karasoezen, B.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2008, 1048 : 60 - +
  • [6] A new high-order energy-preserving scheme for the modified Korteweg-de Vries equation
    Jin-Liang Yan
    Qian Zhang
    Zhi-Yue Zhang
    Dong Liang
    Numerical Algorithms, 2017, 74 : 659 - 674
  • [7] A new high-order energy-preserving scheme for the modified Korteweg-de Vries equation
    Yan, Jin-Liang
    Zhang, Qian
    Zhang, Zhi-Yue
    Liang, Dong
    NUMERICAL ALGORITHMS, 2017, 74 (03) : 659 - 674
  • [8] Multisymplectic box schemes for the complex modified Korteweg-de Vries equation
    Aydin, A.
    Karasozen, B.
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (08)
  • [9] New energy-preserving finite volume element scheme for the korteweg-de vries equation
    Yan, Jin-liang
    Zheng, Liang-hong
    IAENG International Journal of Applied Mathematics, 2017, 47 (02) : 223 - 232
  • [10] Numerical solution of Korteweg-de Vries equation by the Fourier pseudospectral method
    Rashid, Abdur
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2007, 14 (04) : 709 - 721