LINEARLY IMPLICIT ENERGY-PRESERVING FOURIER PSEUDOSPECTRAL SCHEMES FOR THE COMPLEX MODIFIED KORTEWEG-DE VRIES EQUATION

被引:0
作者
Yan, J. L. [1 ]
Zheng, L. H. [2 ]
Zhu, L. [3 ]
Lu, F. Q. [4 ]
机构
[1] Wuyi Univ, Dept Math & Comp, Wu Yi Shan 354300, Peoples R China
[2] 1 Middle Sch Nanping, Dept Informat & Comp Technol, Nanping 353000, Peoples R China
[3] Jiangsu Univ Sci & Technol, Dept Math & Phys, Zhenjiang 212003, Jiangsu, Peoples R China
[4] Changzhou Inst Technol, Changzhou 213032, Peoples R China
基金
中国国家自然科学基金;
关键词
mass; energy; invariant energy quadratization method; Fourier pseudospectral method; complex modified Korteweg-de Vries equation; NUMERICAL-SOLUTION; WAVES;
D O I
10.1017/S1446181120000218
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose two linearly implicit energy-preserving schemes for the complex modified Korteweg-de Vries equation, based on the invariant energy quadratization method. First, a new variable is introduced and a new Hamiltonian system is constructed for this equation. Then the Fourier pseudospectral method is used for the space discretization and the Crank-Nicolson leap-frog schemes for the time discretization. The proposed schemes are linearly implicit, which is only needed to solve a linear system at each time step. The fully discrete schemes can be shown to conserve both mass and energy in the discrete setting. Some numerical examples are also presented to validate the effectiveness of the proposed schemes.
引用
收藏
页码:256 / 273
页数:18
相关论文
共 23 条
[1]   New Explicit Multisymplectic Scheme for the Complex Modified Korteweg-de Vries Equation [J].
Cai Jia-Xiang ;
Miao Jun .
CHINESE PHYSICS LETTERS, 2012, 29 (03)
[2]   Structure-preserving algorithms for the two-dimensional sine-Gordon equation with Neumann boundary conditions [J].
Cai, Wenjun ;
Jiang, Chaolong ;
Wang, Yushun ;
Song, Yongzhong .
JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 395 :166-185
[3]   Linearly implicit Runge-Kutta methods for advection-reaction-diffusion equations [J].
Calvo, MP ;
de Frutos, J ;
Novo, J .
APPLIED NUMERICAL MATHEMATICS, 2001, 37 (04) :535-549
[4]  
Chen J-B., 2001, ELECTRON T NUMER ANA, V12, P193
[5]   NONLINEAR-WAVE PROPAGATION IN MICROPOLAR MEDIA .2. SPECIAL CASES, SOLITARY WAVES AND PAINLEVE ANALYSIS [J].
ERBAY, S ;
SUHUBI, ES .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1989, 27 (08) :915-919
[6]  
Furihata D., 2010, DISCRETE VARIATIONAL
[7]   ARBITRARILY HIGH-ORDER UNCONDITIONALLY ENERGY STABLE SCHEMES FOR THERMODYNAMICALLY CONSISTENT GRADIENT FLOW MODELS [J].
Gong, Yuezheng ;
Zhao, Jia ;
Wang, Qi .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (01) :B135-B156
[8]   Arbitrarily high-order unconditionally energy stable SAV schemes for gradient flow models [J].
Gong, Yuezheng ;
Zhao, Jia ;
Wang, Qi .
COMPUTER PHYSICS COMMUNICATIONS, 2020, 249
[9]   Energy-stable Runge-Kutta schemes for gradient flow models using the energy quadratization approach [J].
Gong, Yuezheng ;
Zhao, Jia .
APPLIED MATHEMATICS LETTERS, 2019, 94 :224-231
[10]   FULLY DISCRETE SECOND-ORDER LINEAR SCHEMES FOR HYDRODYNAMIC PHASE FIELD MODELS OF BINARY VISCOUS FLUID FLOWS WITH VARIABLE DENSITIES [J].
Gong, Yuezheng ;
Zhao, Jia ;
Yang, Xiaogang ;
Wang, Qi .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (01) :B138-B167