A discrete log-Sobolev inequality under a Bakry-Emery type condition

被引:11
作者
Johnson, Oliver [1 ]
机构
[1] Univ Bristol, Sch Math, Univ Walk, Bristol BS8 1TW, Avon, England
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2017年 / 53卷 / 04期
关键词
Bakry-Emery condition; Birth and death chain; Concentration of measure; Discrete probability measure; Log-concavity; Log-Sobolev inequality; NEGATIVE DEPENDENCE; RICCI CURVATURE; SMALL NUMBERS; ENTROPY; SEQUENCES; SYSTEMS; GRAPHS; BOUNDS; LAW;
D O I
10.1214/16-AIHP778
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider probability mass functions V supported on the positive integers using arguments introduced by Caputo, Dai Pra and Posta, based on a Bakry-mery condition for a Markov birth and death operator with invariant measure V. Under this condition, we prove a new modified logarithmic Sobolev inequality, generalizing and strengthening results of Wu, Bobkov and Ledoux, and Caputo, Dai Pra and Posta. We show how this inequality implies results including concentration of measure and hypercontractivity, and discuss how it may extend to higher dimensions.
引用
收藏
页码:1952 / 1970
页数:19
相关论文
共 33 条
[11]  
Cook N. A., 2015, SIZE BIASED COUPLING
[12]   Bounds on the Poincare constant under negative dependence [J].
Daly, Fraser ;
Johnson, Oliver .
STATISTICS & PROBABILITY LETTERS, 2013, 83 (02) :511-518
[13]   Ricci Curvature of Finite Markov Chains via Convexity of the Entropy [J].
Erbar, Matthias ;
Maas, Jan .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 206 (03) :997-1038
[14]   ENTROPIC RICCI CURVATURE BOUNDS FOR DISCRETE INTERACTING SYSTEMS [J].
Fathi, Max ;
Maas, Jan .
ANNALS OF APPLIED PROBABILITY, 2016, 26 (03) :1774-1806
[15]   LOGARITHMIC SOBOLEV INEQUALITIES [J].
GROSS, L .
AMERICAN JOURNAL OF MATHEMATICS, 1975, 97 (04) :1061-1083
[16]  
Guionnet A, 2003, LECT NOTES MATH, V1801, P1
[17]   DISCRETE VERSIONS OF THE TRANSPORT EQUATION AND THE SHEPP-OLKIN CONJECTURE [J].
Hillion, Erwan ;
Johnson, Oliver .
ANNALS OF PROBABILITY, 2016, 44 (01) :276-306
[18]   A NATURAL DERIVATIVE ON [0, n] AND A BINOMIAL POINCARE INEQUALITY [J].
Hillion, Erwan ;
Johnson, Oliver ;
Yu, Yaming .
ESAIM-PROBABILITY AND STATISTICS, 2014, 18 :703-712
[19]  
Houdré C, 2002, ANN PROBAB, V30, P1223
[20]   Log-concavity and the maximum entropy property of the Poisson distribution [J].
Johnson, Oliver .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2007, 117 (06) :791-802