A discrete log-Sobolev inequality under a Bakry-Emery type condition

被引:11
作者
Johnson, Oliver [1 ]
机构
[1] Univ Bristol, Sch Math, Univ Walk, Bristol BS8 1TW, Avon, England
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2017年 / 53卷 / 04期
关键词
Bakry-Emery condition; Birth and death chain; Concentration of measure; Discrete probability measure; Log-concavity; Log-Sobolev inequality; NEGATIVE DEPENDENCE; RICCI CURVATURE; SMALL NUMBERS; ENTROPY; SEQUENCES; SYSTEMS; GRAPHS; BOUNDS; LAW;
D O I
10.1214/16-AIHP778
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider probability mass functions V supported on the positive integers using arguments introduced by Caputo, Dai Pra and Posta, based on a Bakry-mery condition for a Markov birth and death operator with invariant measure V. Under this condition, we prove a new modified logarithmic Sobolev inequality, generalizing and strengthening results of Wu, Bobkov and Ledoux, and Caputo, Dai Pra and Posta. We show how this inequality implies results including concentration of measure and hypercontractivity, and discuss how it may extend to higher dimensions.
引用
收藏
页码:1952 / 1970
页数:19
相关论文
共 33 条
[1]   On logarithmic Sobolev inequalities for continuous time random walks on graphs [J].
Ané, C ;
Ledoux, M .
PROBABILITY THEORY AND RELATED FIELDS, 2000, 116 (04) :573-602
[2]  
Bakry D., 2014, Analysis and geometry of Markov diffusion operators
[3]  
Bakry D, 1983, SEMINAIRE PROBABILIT, V84, P177, DOI 10.1007/BFb0075847
[4]   Modified logarithmic Sobolev inequalities in discrete settings [J].
Bobkov, Sergey G. ;
Tetali, Prasad .
JOURNAL OF THEORETICAL PROBABILITY, 2006, 19 (02) :289-336
[5]   On modified logarithmic Sobolev inequalities for Bernoulli and Poisson measures [J].
Bobkov, SG ;
Ledoux, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 156 (02) :347-365
[6]   Spectral gap estimates for interacting particle systems via a Bochner-type identity [J].
Boudou, AS ;
Caputo, P ;
Pra, PD ;
Posta, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 232 (01) :222-258
[7]   Convex entropy decay via the Bochner-Bakry-Emery approach [J].
Caputo, Pietro ;
Pra, Paolo Dai ;
Posta, Gustavo .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2009, 45 (03) :734-753
[8]  
Chafai D., 2006, ESAIM Probab. Stat, V10, P317
[9]   Intertwining and commutation relations for birth-death processes [J].
Chafai, Djalil ;
Joulin, Alderic .
BERNOULLI, 2013, 19 (5A) :1855-1879
[10]  
Chen Mufa, 1996, Acta Mathematica Sinica. New Series, V12, P337