Spinel/Post-spinel engineering on layered oxide cathodes for sodium-ion batteries

被引:269
|
作者
Zhu, Yan-Fang [1 ]
Xiao, Yao [1 ]
Dou, Shi-Xue [2 ]
Kang, Yong-Mook [3 ,4 ]
Chou, Shu-Lei [1 ]
机构
[1] Wenzhou Univ, Inst Carbon Neutralizat, Coll Chem & Mat Engn, Wenzhou 325035, Zhejiang, Peoples R China
[2] Univ Wollongong, Australian Inst Innovat Mat, Inst Superconducting & Elect Mat, Innovat Campus,Squires Way, North Wollongong, NSW 2522, Australia
[3] Korea Univ, Dept Mat Sci & Engn, Seoul 02841, South Korea
[4] Korea Univ, KU KIST Grad Sch Converging Sci & Technol, Seoul 02841, South Korea
来源
ESCIENCE | 2021年 / 1卷 / 01期
基金
中国博士后科学基金;
关键词
Sodium-ion batteries; Cathode materials; Layered structures; Spinel engineering; Electrochemistry; ELECTROCHEMICAL PROPERTIES; HIGH-CAPACITY; LONG-LIFE; LOW-COST; PERFORMANCE; LINI0.5MN1.5O4; STABILITY; INSERTION; ELECTRODE; MICRO;
D O I
10.1016/j.esci.2021.10.003
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Sodium-ion batteries (SIBs) have attracted much scientific interest for use in large-scale energy storage systems because sodium is cheaper than lithium. However, the large radius of Na+ and barriers to Na+ transport result in sluggish kinetics and complicated structural distortion, leading to unsatisfactory rate capability and poor cycling stability. It therefore is essential to develop an electrode with enhanced kinetics and a stable structure during cycling to improve SIB performance. Among the various layered oxide cathodes, those with a spinel-like structure could play an important role in boosting electron transport because of their excellent intrinsic conductivity, including by coordinating with Na+ insertion/extraction. Moreover, thanks to the inherent high stability of the spinel-like phase, it could function as a stabilizer for host cathode structures. This review summarizes recent advances in spinel engineering on layered oxide cathodes to boost Na+ transport kinetics and provide structural stability to achieve high-performance SIBs, focusing particularly on post-spinel structures, layered oxide integrated spinel-like structures, and spinel transitions. The insights proposed in this review will be useful for guiding rational structural engineering and design to drive the development of new materials and chemistries in Na-based electrode materials.
引用
收藏
页码:13 / 27
页数:15
相关论文
共 50 条
  • [41] Layered oxide cathodes for sodium-ion batteries: microstructure design, local chemistry and structural unit
    Kong, Ling-Yi
    Liu, Han-Xiao
    Zhu, Yan-Fang
    Li, Jia-Yang
    Su, Yu
    Li, Hong-Wei
    Hu, Hai-Yan
    Liu, Yi-Feng
    Yang, Ming-Jing
    Jian, Zhuang-Chun
    Jia, Xin-Bei
    Chou, Shu-Lei
    Xiao, Yao
    SCIENCE CHINA-CHEMISTRY, 2024, 67 (01) : 191 - 213
  • [42] Homeostatic Solid Solution in Layered Transition-Metal Oxide Cathodes of Sodium-Ion Batteries
    Ren, Meng
    Zhao, Shuo
    Gao, Suning
    Zhang, Tong
    Hou, Machuan
    Zhang, Wei
    Feng, Kun
    Zhong, Jun
    Hua, Weibo
    Indris, Sylvio
    Zhang, Kai
    Chen, Jun
    Li, Fujun
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 145 (01) : 224 - 233
  • [43] Revealing the microstructure and mechanism of layered oxide cathodes for sodium-ion batteries by advanced TEM techniques
    Xu, Sheng
    Zhao, Lihua
    Li, Shukui
    Guo, Shaohua
    CHEMICAL COMMUNICATIONS, 2025, 61 (21) : 4147 - 4159
  • [44] Electrochemical performance and structural evolution of layered oxide cathodes materials for sodium-ion batteries: A review
    Azambou, Christelle Ivane
    Obiukwu, Osita Obineche
    Tsobnang, Patrice Kenfack
    Kenfack, Ignas Tonle
    Kalu, Egwu Eric
    Oguzie, Emeka Emmanuel
    JOURNAL OF ENERGY STORAGE, 2024, 94
  • [45] Layered oxide cathodes for sodium-ion batteries:microstructure design, local chemistry and structural unit
    Ling-Yi Kong
    Han-Xiao Liu
    Yan-Fang Zhu
    Jia-Yang Li
    Yu Su
    Hong-Wei Li
    Hai-Yan Hu
    Yi-Feng Liu
    Ming-Jing Yang
    Zhuang-Chun Jian
    Xin-Bei Jia
    Shu-Lei Chou
    Yao Xiao
    Science China(Chemistry), 2024, 67 (01) : 191 - 213
  • [46] Layered oxide cathodes for sodium-ion batteries: microstructure design, local chemistry and structural unit
    Ling-Yi Kong
    Han-Xiao Liu
    Yan-Fang Zhu
    Jia-Yang Li
    Yu Su
    Hong-Wei Li
    Hai-Yan Hu
    Yi-Feng Liu
    Ming-Jing Yang
    Zhuang-Chun Jian
    Xin-Bei Jia
    Shu-Lei Chou
    Yao Xiao
    Science China Chemistry, 2024, 67 (1) : 191 - 213
  • [47] High-Capacity Layered-Spinel Cathodes for Li-Ion Batteries
    Nayak, Prasant Kumar
    Levi, Elena
    Grinblat, Judith
    Levi, Mikhael
    Markovsky, Boris
    Munichandraiah, N.
    Sun, Yang Kook
    Aurbach, Doron
    CHEMSUSCHEM, 2016, 9 (17) : 2404 - 2413
  • [48] Oxide cathodes for sodium-ion batteries: Designs,challenges, and perspectives
    Tao Chen
    Baixue Ouyang
    Xiaowen Fan
    Weili Zhou
    Weifang Liu
    Kaiyu Liu
    Carbon Energy, 2022, 4 (02) : 170 - 199
  • [49] Oxide cathodes for sodium-ion batteries: Designs, challenges, and perspectives
    Chen, Tao
    Ouyang, Baixue
    Fan, Xiaowen
    Zhou, Weili
    Liu, Weifang
    Liu, Kaiyu
    CARBON ENERGY, 2022, 4 (02) : 170 - 199
  • [50] Lifting the redox potential of layered sulfide cathodes for sodium-ion batteries
    Sun, Yanan
    Adelhelm, Philipp
    MATTER, 2022, 5 (08) : 2500 - 2501