SUPERCONVERGENCE ANALYSIS FOR TIME-FRACTIONAL DIFFUSION EQUATIONS WITH NONCONFORMING MIXED FINITE ELEMENT METHOD

被引:6
作者
Zhang, Houchao [1 ]
Shi, Dongyang [2 ]
机构
[1] Pingdingshan Univ, Sch Math & Stat, Pingdingshan 467000, Peoples R China
[2] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonconforming MFEM; L1; method; Time-fractional diffusion equations; Superconvergence; DISCONTINUOUS GALERKIN METHOD; DIFFERENCE SCHEME; SPACE; ACCURACY; STABILITY;
D O I
10.4208/jcm.1805-m2017-0256
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a fully discrete scheme based on the L1 approximation in temporal direction for the fractional derivative of order in (0, 1) and nonconforming mixed finite element method (MFEM) in spatial direction is established. First, we prove a novel result of the consistency error estimate with order O(h(2)) of EQ(1)(rot) element (see Lemma 2.3). Then, by using the proved character of EQ(1rot) element, we present the superconvergent estimates for the original variable u in the broken H-1-norm and the flux (p) over right arrow = del u in the (L-2)(2)-norm under a weaker regularity of the exact solution. Finally, numerical results are provided to confirm the theoretical analysis.
引用
收藏
页码:488 / 505
页数:18
相关论文
共 55 条
[1]  
Basu TS, 2012, INT J NUMER ANAL MOD, V9, P658
[2]   Finite difference/finite element method for two-dimensional space and time fractional Bloch-Torrey equations [J].
Bu, Weiping ;
Tang, Yifa ;
Wu, Yingchuan ;
Yang, Jiye .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 293 :264-279
[3]   Compact finite difference method for the fractional diffusion equation [J].
Cui, Mingrong .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (20) :7792-7804
[4]   FINITE ELEMENT METHOD FOR THE SPACE AND TIME FRACTIONAL FOKKER-PLANCK EQUATION [J].
Deng, Weihua .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 47 (01) :204-226
[5]   A compact difference scheme for the fractional diffusion-wave equation [J].
Du, R. ;
Cao, W. R. ;
Sun, Z. Z. .
APPLIED MATHEMATICAL MODELLING, 2010, 34 (10) :2998-3007
[6]   Numerical approximation of a time dependent, nonlinear, space-fractional diffusion equation [J].
Ervin, Vincent J. ;
Heuer, Norbert ;
Roop, John Paul .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (02) :572-591
[7]   OPTIMAL COLLOCATION NODES FOR FRACTIONAL DERIVATIVE OPERATORS [J].
Fatone, L. ;
Funaro, D. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (03) :A1504-A1524
[8]   A compact finite difference scheme for the fractional sub-diffusion equations [J].
Gao, Guang-hua ;
Sun, Zhi-zhong .
JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (03) :586-595
[9]   Wright functions as scale-invariant solutions of the diffusion-wave equation [J].
Gorenflo, R ;
Luchko, Y ;
Mainardi, F .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 118 (1-2) :175-191
[10]   Time fractional diffusion: A discrete random walk approach [J].
Gorenflo, R ;
Mainardi, F ;
Moretti, D ;
Paradisi, P .
NONLINEAR DYNAMICS, 2002, 29 (1-4) :129-143