SUPERCONVERGENCE ANALYSIS FOR TIME-FRACTIONAL DIFFUSION EQUATIONS WITH NONCONFORMING MIXED FINITE ELEMENT METHOD

被引:6
|
作者
Zhang, Houchao [1 ]
Shi, Dongyang [2 ]
机构
[1] Pingdingshan Univ, Sch Math & Stat, Pingdingshan 467000, Peoples R China
[2] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonconforming MFEM; L1; method; Time-fractional diffusion equations; Superconvergence; DISCONTINUOUS GALERKIN METHOD; DIFFERENCE SCHEME; SPACE; ACCURACY; STABILITY;
D O I
10.4208/jcm.1805-m2017-0256
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a fully discrete scheme based on the L1 approximation in temporal direction for the fractional derivative of order in (0, 1) and nonconforming mixed finite element method (MFEM) in spatial direction is established. First, we prove a novel result of the consistency error estimate with order O(h(2)) of EQ(1)(rot) element (see Lemma 2.3). Then, by using the proved character of EQ(1rot) element, we present the superconvergent estimates for the original variable u in the broken H-1-norm and the flux (p) over right arrow = del u in the (L-2)(2)-norm under a weaker regularity of the exact solution. Finally, numerical results are provided to confirm the theoretical analysis.
引用
收藏
页码:488 / 505
页数:18
相关论文
共 50 条
  • [1] Superconvergence analysis of nonconforming finite element method for time-fractional nonlinear parabolic equations on anisotropic meshes
    Zhang, Houchao
    Yang, Xiaoxia
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (10) : 2707 - 2724
  • [2] Superconvergence analysis of nonconforming finite element method for two-dimensional time fractional diffusion equations
    Zhao, Y.
    Zhang, Y.
    Shi, D.
    Liu, F.
    Turner, I.
    APPLIED MATHEMATICS LETTERS, 2016, 59 : 38 - 47
  • [3] Two Mixed Finite Element Methods for Time-Fractional Diffusion Equations
    Zhao, Yanmin
    Chen, Pan
    Bu, Weiping
    Liu, Xiangtao
    Tang, Yifa
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 70 (01) : 407 - 428
  • [4] Superconvergence analysis of a two-grid finite element method for nonlinear time-fractional diffusion equations
    Gu, Qiling
    Chen, Yanping
    Huang, Yunqing
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (08):
  • [5] Mixed finite-element method for multi-term time-fractional diffusion and diffusion-wave equations
    Li, Meng
    Huang, Chengming
    Ming, Wanyuan
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (02): : 2309 - 2334
  • [6] Superconvergence of a finite element method for the time-fractional diffusion equation with a time-space dependent diffusivity
    An, Na
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [7] Superconvergence analysis of a new low order nonconforming MFEM for time-fractional diffusion equation
    Shi, Dongyang
    Yang, Huaijun
    APPLIED NUMERICAL MATHEMATICS, 2018, 131 : 109 - 122
  • [8] Superconvergence of a Finite Element Method for the Multi-term Time-Fractional Diffusion Problem
    Huang, Chaobao
    Stynes, Martin
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 82 (01)
  • [9] Superconvergence of a Finite Element Method for the Multi-term Time-Fractional Diffusion Problem
    Chaobao Huang
    Martin Stynes
    Journal of Scientific Computing, 2020, 82
  • [10] Galerkin finite element method for time-fractional stochastic diffusion equations
    Zou, Guang-an
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (04): : 4877 - 4898