Improving projection-based eigensolvers via adaptive techniques

被引:2
作者
Galgon, Martin [1 ]
Kraemer, Lukas [1 ]
Lang, Bruno [1 ]
机构
[1] Berg Univ Wuppertal, Fak Math & Nat Wissensch, D-42097 Wuppertal, Germany
关键词
Chebyshev approximation; eigenvalue method; FEAST; iterative linear solver; numerical integration; projection method; ITERATION METHOD; EIGENVALUE; ALGORITHM; FEAST;
D O I
10.1002/nla.2124
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider subspace iteration (or projection-based) algorithms for computing those eigenvalues (and associated eigenvectors) of a Hermitian matrix that lie in a prescribed interval. For the case that the projector is approximated with polynomials, we present an adaptive strategy for selecting the degree of these polynomials such that convergence is achieved with near-to-optimum overall work without detailed a priori knowledge about the eigenvalue distribution. The idea is then transferred to the approximation of the projector by numerical integration, which corresponds to FEAST algorithm proposed by E. Polizzi in 2009. [E.Polizzi: Density-matrix-based algorithm for solving eigenvalue problems. Phys.Rev.B 2009; 79:115112]. Here, our adaptation controls the number of integration nodes. We also discuss the interaction of the method with search space reduction methods.
引用
收藏
页数:15
相关论文
共 26 条
  • [1] Alvermann A, 2014, LECT NOTES COMPUT SC, V8806, P577, DOI 10.1007/978-3-319-14313-2_49
  • [2] [Anonymous], THESIS
  • [4] Braun M, 1993, DIFFERENTIAL EQUATIO, V11
  • [5] The electronic properties of graphene
    Castro Neto, A. H.
    Guinea, F.
    Peres, N. M. R.
    Novoselov, K. S.
    Geim, A. K.
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (01) : 109 - 162
  • [6] Davis PJ, 1984, Methods of Numerical Integration, Vsecond
  • [7] Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing Sparse QR Factorization
    Davis, Timothy A.
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2011, 38 (01):
  • [8] 2 POLYNOMIAL METHODS OF CALCULATING FUNCTIONS OF SYMMETRICAL MATRICES
    DRUSKIN, VL
    KNIZHNERMAN, LA
    [J]. USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1989, 29 (06): : 112 - 121
  • [9] Galgon Martin, 2014, Proceedings in Applied Mathematics and Mechanics, V14, P821, DOI 10.1002/pamm.201410391
  • [10] Guttel S, 2014, MIMS EPRINT