U(1) Wilson lattice gauge theories in digital quantum simulators

被引:125
作者
Muschik, Christine [1 ,2 ]
Heyl, Markus [3 ,4 ,5 ,6 ]
Martinez, Esteban
Monz, Thomas
Schindler, Philipp
Vogell, Berit [1 ,2 ]
Dalmonte, Marcello [1 ,7 ]
Hauke, Philipp [1 ,2 ]
Blatt, Rainer [2 ]
Zoller, Peter [1 ,2 ]
机构
[1] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria
[2] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat, A-6020 Innsbruck, Austria
[3] Tech Univ Munich, Walter Schottky Inst, Dept Phys, D-85748 Garching, Germany
[4] Tech Univ Munich, Inst Adv Study, D-85748 Garching, Germany
[5] Max Planck Inst Physik Komplexer Syst, D-01187 Dresden, Germany
[6] Univ Innsbruck, Inst Expt Phys, A-6020 Innsbruck, Austria
[7] Abdus Salam Int Ctr Theoret Phys, Str Costiera 11, Trieste, Italy
基金
奥地利科学基金会;
关键词
quantum simulations of lattice gauge theories; digital quantum simulation; trapped ions; MASSIVE SCHWINGER MODEL; FIELD; PROPAGATION; INVARIANCE; DYNAMICS; SYSTEMS;
D O I
10.1088/1367-2630/aa89ab
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Lattice gauge theories describe fundamental phenomena in nature, but calculating their real-time dynamics on classical computers is notoriously difficult. In a recent publication (Martinez et al 2016 Nature 534 516), we proposed and experimentally demonstrated a digital quantum simulation of the paradigmatic Schwinger model, aU(1)-Wilson lattice gauge theory describing the interplay between fermionic matter and gauge bosons. Here, we provide a detailed theoretical analysis of the performance and the potential of this protocol. Our strategy is based on analytically integrating out the gauge bosons, which preserves exact gauge invariance but results in complicated long-range interactions between the matter fields. Trapped-ion platforms are naturally suited to implementing these interactions, allowing for an efficient quantum simulation of the model, with a number of gate operations that scales polynomially with system size. Employing numerical simulations, we illustrate that relevant phenomena can be observed in larger experimental systems, using as an example the production of particle-antiparticle pairs after a quantum quench. We investigate theoretically the robustness of the scheme towards generic error sources, and show that near-future experiments can reach regimes where finite-size effects are insignificant. We also discuss the challenges in quantum simulating the continuum limit of the theory. Using our scheme, fundamental phenomena of lattice gauge theories can be probed using a broad set of experimentally accessible observables, including the entanglement entropy and the vacuum persistence amplitude.
引用
收藏
页数:20
相关论文
共 82 条
[1]  
[Anonymous], 1985, Lanczos Algorithms for Large Symmetric Eigenvalue Computations
[2]   Atomic Quantum Simulation of Dynamical Gauge Fields Coupled to Fermionic Matter: From String Breaking to Evolution after a Quench [J].
Banerjee, D. ;
Dalmonte, M. ;
Mueller, M. ;
Rico, E. ;
Stebler, P. ;
Wiese, U. -J. ;
Zoller, P. .
PHYSICAL REVIEW LETTERS, 2012, 109 (17)
[3]   The mass spectrum of the Schwinger model with matrix product states [J].
Banuls, M. C. ;
Cichy, K. ;
Cirac, J. I. ;
Jansen, K. .
JOURNAL OF HIGH ENERGY PHYSICS, 2013, (11)
[4]  
Banuls M. C., 2013, P SCI LATTICE2013, P332
[5]   Chiral condensate in the Schwinger model with matrix product operators [J].
Banuls, Mari Carmen ;
Cichy, Krzysztof ;
Jansen, Karl ;
Saito, Hana .
PHYSICAL REVIEW D, 2016, 93 (09)
[6]   Digitized adiabatic quantum computing with a superconducting circuit [J].
Barends, R. ;
Shabani, A. ;
Lamata, L. ;
Kelly, J. ;
Mezzacapo, A. ;
Heras, U. Las ;
Babbush, R. ;
Fowler, A. G. ;
Campbell, B. ;
Chen, Yu ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Jeffrey, E. ;
Lucero, E. ;
Megrant, A. ;
Mutus, J. Y. ;
Neeley, M. ;
Neill, C. ;
O'Malley, P. J. J. ;
Quintana, C. ;
Roushan, P. ;
Sank, D. ;
Vainsencher, A. ;
Wenner, J. ;
White, T. C. ;
Solano, E. ;
Neven, H. ;
Martinis, John M. .
NATURE, 2016, 534 (7606) :222-226
[7]   Digital quantum simulation of fermionic models with a superconducting circuit [J].
Barends, R. ;
Lamata, L. ;
Kelly, J. ;
Garcia-Alvarez, L. ;
Fowler, A. G. ;
Megrant, A. ;
Jeffrey, E. ;
White, T. C. ;
Sank, D. ;
Mutus, J. Y. ;
Campbell, B. ;
Chen, Yu ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Hoi, I. -C. ;
Neill, C. ;
O'Malley, P. J. J. ;
Quintana, C. ;
Roushan, P. ;
Vainsencher, A. ;
Wenner, J. ;
Solano, E. ;
Martinis, John M. .
NATURE COMMUNICATIONS, 2015, 6
[8]   Gauge-invariant implementation of the Abelian-Higgs model on optical lattices [J].
Bazavov, A. ;
Meurice, Y. ;
Tsai, S. -W. ;
Unmuth-Yockey, J. ;
Zhang, Jin .
PHYSICAL REVIEW D, 2015, 92 (07)
[9]  
Blatt R, 2012, NAT PHYS, V8, P277, DOI [10.1038/NPHYS2252, 10.1038/nphys2252]
[10]   Proof of Adiabatic law [J].
Born, M. ;
Fock, V. .
ZEITSCHRIFT FUR PHYSIK, 1928, 51 (3-4) :165-180