GLOBAL WEAK SOLUTIONS TO THE STOCHASTIC ERICKSEN-LESLIE SYSTEM IN DIMENSION TWO

被引:0
作者
Du, Hengrong [1 ]
Wang, Changyou [2 ]
机构
[1] Vanderbilt Univ, Dept Math, Nashville, TN 37240 USA
[2] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
Stochastic nematic liquid crystal flow; Wiener process; Brownian motion; LIQUID-CRYSTALS DRIVEN; EXISTENCE; MARTINGALE; REGULARITY; EQUATIONS; NOISE; FLOW;
D O I
10.3934/dcds.2021187
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish the global existence of weak martingale solutions to the simplified stochastic Ericksen-Leslie system modeling the nematic liquid crystal flow driven by Wiener-type noises on the two-dimensional bounded domains. The construction of solutions is based on the convergence of Ginzburg- Landau approximations. To achieve such a convergence, we first utilize the concentration-cancellation method for the Ericksen stress tensor fields based on a Pohozaev type argument, and then the Skorokhod compactness theorem, which is built upon uniform energy estimates.
引用
收藏
页码:2175 / 2197
页数:23
相关论文
共 24 条
  • [1] STOCHASTIC NAVIER-STOKES EQUATIONS
    BENSOUSSAN, A
    [J]. ACTA APPLICANDAE MATHEMATICAE, 1995, 38 (03) : 267 - 304
  • [2] A NOTE ON THE STOCHASTIC ERICKSEN-LESLIE EQUATIONS FOR NEMATIC LIQUID CRYSTALS
    Brzeniak, Zdzislaw
    Hausenblas, Erika
    Razafimandimby, Paul Andre
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (11): : 5785 - 5802
  • [3] Some results on the penalised nematic liquid crystals driven by multiplicative noise: weak solution and maximum principle
    Brzezniak, Zdzislaw
    Hausenblas, Erika
    Razafimandimby, Paul Andre
    [J]. STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2019, 7 (03): : 417 - 475
  • [4] Martingale solutions of nematic liquid crystals driven by pure jump noise in the Marcus canonical form
    Brzezniak, Zdzislaw
    Manna, Utpal
    Panda, Akash Ashirbad
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (10) : 6204 - 6283
  • [5] Existence, uniqueness and regularity for the stochastic Ericksen-Leslie equation
    De Bouard, Anne
    Hocquet, Antoine
    Prohl, Andreas
    [J]. NONLINEARITY, 2021, 34 (06) : 4057 - 4114
  • [6] DiPerna R. J., 1988, J AM MATH SOC, V1, P59, DOI 10.2307/1990967
  • [7] Du H., 2020, Advanced seat suspension control system design for heavy duty vehicles
  • [8] CONSERVATION LAWS FOR LIQUID CRYSTALS
    ERICKSEN, JL
    [J]. TRANSACTIONS OF THE SOCIETY OF RHEOLOGY, 1961, 5 : 23 - 34
  • [9] ERICKSEN JL, 1962, ARCH RATION MECH AN, V9, P371
  • [10] MARTINGALE AND STATIONARY SOLUTIONS FOR STOCHASTIC NAVIER-STOKES EQUATIONS
    FLANDOLI, F
    GATAREK, D
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 1995, 102 (03) : 367 - 391