Aqueous rechargeable zinc batteries: Challenges and opportunities

被引:29
作者
Huang, Jianhang [1 ,2 ,3 ]
Qiu, Xuan [1 ,2 ]
Wang, Nan [1 ,2 ]
Wang, Yonggang [1 ,2 ]
机构
[1] Fudan Univ, iChEM Collaborat Innovat Ctr Chem Energy Mat, Inst New Energy, Dept Chem, Shanghai 200433, Peoples R China
[2] Fudan Univ, iChEM Collaborat Innovat Ctr Chem Energy Mat, Inst New Energy, Shanghai Key Lab Mol Catalysis & Innovat Mat, Shanghai 200433, Peoples R China
[3] Zhejiang Normal Univ, Dept Chem, Minist Educ Adv Catalysis Mat, Key Lab, Jinhua 321004, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Aqueous batteries; Metallic zinc anode; Zinc ion storage mechanism; Electrode; electrolyte interface; Electrolyte optimization; ION BATTERIES; HIGH-CAPACITY; ELECTROLYTE; INTERCALATION; CHEMISTRY; CATHODE; FRAMEWORK; SAFE;
D O I
10.1016/j.coelec.2021.100801
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The development of zinc batteries with advantages of high safety, low cost, and environmental friendliness is energetic in recent years because of the increasing requirement on largescale energy storage systems for integrating renewable energy in the power grid. However, there are still significant challenges in the way of commercialization of aqueous zinc batteries, such as parasitic reaction, zinc dendrite, and structure collapse and dissolution of cathode materials. This review summarizes the Zn2+ storage mechanism of cathode materials and the challenges in front of electrode materials and aqueous electrolyte. Meanwhile, corresponding solutions and points that should be paid attention for commercialization are discussed.
引用
收藏
页数:8
相关论文
共 83 条
[21]   Decoupled amphoteric water electrolysis and its integration with Mn-Zn battery for flexible utilization of renewables [J].
Huang, Jianhang ;
Xie, Yihua ;
Yan, Lei ;
Wang, Bingliang ;
Kong, Taoyi ;
Dong, Xiaoli ;
Wang, Yonggang ;
Xia, Yongyao .
ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (02) :883-889
[22]   Progress of Organic Electrodes in Aqueous Electrolyte for Energy Storage and Conversion [J].
Huang, Jianhang ;
Dong, Xiaoli ;
Guo, Zhaowei ;
Wang, Yonggang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (42) :18322-18333
[23]   Recent Progress of Rechargeable Batteries Using Mild Aqueous Electrolytes [J].
Huang, Jianhang ;
Guo, Zhaowei ;
Ma, Yuanyuan ;
Bin, Duan ;
Wang, Yonggang ;
Xia, Yongyao .
SMALL METHODS, 2019, 3 (01)
[24]   Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery [J].
Huang, Jianhang ;
Wang, Zhuo ;
Hou, Mengyan ;
Dong, Xiaoli ;
Liu, Yao ;
Wang, Yonggang ;
Xia, Yongyao .
NATURE COMMUNICATIONS, 2018, 9
[25]   Recent Progress in the Electrolytes of Aqueous Zinc-Ion Batteries [J].
Huang, Shuo ;
Zhu, Jiacai ;
Tian, Jinlei ;
Niu, Zhiqiang .
CHEMISTRY-A EUROPEAN JOURNAL, 2019, 25 (64) :14480-14494
[26]   Active Materials for Aqueous Zinc Ion Batteries: Synthesis, Crystal Structure, Morphology, and Electrochemistry [J].
Jia, Xiaoxiao ;
Liu, Chaofeng ;
Neale, Zachary G. ;
Yang, Jihui ;
Cao, Guozhong .
CHEMICAL REVIEWS, 2020, 120 (15) :7795-7866
[27]   Copper hexacyanoferrate with a well-defined open framework as a positive electrode for aqueous zinc ion batteries [J].
Jia, Zhijun ;
Wang, Baoguo ;
Wang, Yi .
MATERIALS CHEMISTRY AND PHYSICS, 2015, 149 :601-606
[28]   Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface [J].
Kundu, Dipan ;
Vajargah, Shahrzad Hosseini ;
Wan, Liwen ;
Adams, Brian ;
Prendergast, David ;
Nazar, Linda F. .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (04) :881-892
[29]  
Kundu D, 2016, NAT ENERGY, V1, DOI [10.1038/nenergy.2016.119, 10.1038/NENERGY.2016.119]
[30]   Elucidating the intercalation mechanism of zinc ions into α-MnO2 for rechargeable zinc batteries [J].
Lee, Boeun ;
Lee, Hae Ri ;
Kim, Haesik ;
Chung, Kyung Yoon ;
Cho, Byung Won ;
Oh, Si Hyoung .
CHEMICAL COMMUNICATIONS, 2015, 51 (45) :9265-9268