The heat equation in Lq((O, T), Lp)-spaces with weights

被引:45
作者
Krylov, NV [1 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
关键词
Sobolev spaces with weights; parabolic equations;
D O I
10.1137/S0036141000372039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Existence and uniqueness theorems are presented for the heat equation in L-p-spaces with or without weights allowing derivatives of solutions to blow up near the boundary. It is allowed for the powers of summability with respect to space and time variables to be different.
引用
收藏
页码:1117 / 1141
页数:25
相关论文
共 12 条
[1]   CONVOLUTION OPERATORS ON BANACH SPACE VALUED FUNCTIONS [J].
BENEDEK, A ;
PANZONE, R ;
CALDERON, AP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1962, 48 (03) :356-&
[2]  
Krasnosel'skii M. A., 1966, Integral operators in spaces of summable functions
[3]  
Krylov N. V., 1999, Mathematical Surveys and Monographs, V64, P185
[4]  
Krylov N. V., 1994, TOPOL METHOD NONL AN, V4, P355
[5]  
Krylov NicolaiV., 1999, Annali della Scuola Normale di Pisa, Classes di Scienze 4e serie, V28, P675
[6]   Weighted Sobolev spaces and Laplace's equation and the heat equations in a half space [J].
Krylov, NV .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1999, 24 (9-10) :1611-1653
[7]  
KRYLOV NV, IN PRESS J FUNCT ANA
[8]  
Ladyzhenskaya O. A., 1968, LINEAR QUASI LINEAR
[9]   LP-MULTIPLIER THEOREMS [J].
LITTMAN, W ;
MCCARTHY, C ;
RIVIERE, N .
STUDIA MATHEMATICA, 1968, 30 (02) :193-&
[10]  
STEIN EM, 1993, HARMONIC ANAL REAL V