3D Marchenko applications: implementation and examples

被引:6
|
作者
Brackenhoff, Joeri [1 ,2 ]
Thorbecke, Jan [1 ]
Meles, Giovanni [1 ,3 ]
Koehne, Victor [4 ]
Barrera, Diego [4 ]
Wapenaar, Kees [1 ]
机构
[1] Delft Univ Technol, Dept Geosci & Engn, Stevinweg 1, NL-2628 CN Delft, Netherlands
[2] Swiss Fed Inst Technol, Dept Earth Sci, Sonneggstr 5, CH-8092 Zurich, Switzerland
[3] Univ Lausanne, Inst Earth Sci, CH-1015 Lausanne, Switzerland
[4] Senai Cimatec, Av Orlando Gomes 2845, BR-41650010 Salvador, BA, Brazil
基金
欧盟地平线“2020”;
关键词
Signal processing; Seismics; Numerical study; GREENS-FUNCTION RETRIEVAL; INTERNAL MULTIPLES; REFLECTION DATA; ELIMINATION; PRIMARIES;
D O I
10.1111/1365-2478.13151
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We implement the 3D Marchenko equations to retrieve responses to virtual sources inside the subsurface. For this, we require reflection data at the surface of the Earth that contain no free-surface multiples and are densely sampled in space. The required 3D reflection data volume is very large and solving the Marchenko equations requires a significant amount of computational cost. To limit the cost, we apply floating point compression to the reflection data to reduce their volume and the loading time from disk. We apply the Marchenko implementation to numerical reflection data to retrieve accurate Green's functions inside the medium and use these reflection data to apply imaging. This requires the simulation of many virtual source points, which we circumvent using virtual plane-wave sources instead of virtual point sources. Through this method, we retrieve the angle-dependent response of a source from a depth level rather than of a point. We use these responses to obtain angle-dependent structural images of the subsurface, free of contamination from wrongly imaged internal multiples. These images have less lateral resolution than those obtained using virtual point sources, but are more efficiently retrieved.
引用
收藏
页码:35 / 56
页数:22
相关论文
共 50 条
  • [1] A new 3D graphics library: Concepts, implementation, and examples
    Alefeld, M
    Haber, J
    Heim, A
    VISUALIZATION AND MATHEMATICS: EXPERIMENTS, SIMULATIONS AND ENVIRONMENTS, 1997, : 211 - 225
  • [2] SMS design method in 3D geometry:: Examples and applications
    Benítez, P
    Miñano, JC
    Blen, J
    Mohedano, R
    Chaves, J
    Dross, O
    Hernández, M
    Alvarez, JL
    Falicoff, W
    NONIMAGING OPTICS: MAXIMUM EFFICIENCY LIGHT TRANSFER VII, 2003, 5185 : 18 - 29
  • [3] Implementation of 3D Optical Scanning Technology for Automotive Applications
    Kus, Abdil
    SENSORS, 2009, 9 (03) : 1967 - 1979
  • [4] Modeling 3D garments by examples
    Li, Jituo
    Lu, Guodong
    COMPUTER-AIDED DESIGN, 2014, 49 : 28 - 41
  • [5] 3D implementation of Scatter Estimation in 3D PET
    Iatrou, M.
    Manjeshwar, R. M.
    Ross, S. G.
    Thielemans, K.
    Stearns, C. W.
    2006 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOL 1-6, 2006, : 2142 - 2145
  • [6] DEMOCRATIZATION OF 3D APPLICATIONS IN NUCLEAR POWER PLANTS; LASER SCANNING 3D TECHNOLOGY IMPLEMENTATION IN SPANISH PWRS
    Jardi, Xavier
    Angas, Jorge
    PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING 2010, VOL 3, 2011, : 235 - +
  • [7] Examples of 3D grasp quality computations
    Miller, Andrew T.
    Allen, Peter K.
    Proceedings - IEEE International Conference on Robotics and Automation, 1999, 2 : 1240 - 1246
  • [8] ShapeForge: Modeling by Examples for 3D Printing
    Lefebvre, Sylvain
    ERCIM NEWS, 2014, (96): : 46 - 47
  • [9] Examples of 3D grasp quality computations
    Miller, AT
    Allen, PK
    ICRA '99: IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-4, PROCEEDINGS, 1999, : 1240 - 1246
  • [10] Implementation of the Marchenko method
    Thorbecke, Jan
    Slob, Evert
    Brackenhoff, Joeri
    van der Neut, Joost
    Wapenaar, Kees
    GEOPHYSICS, 2017, 82 (06) : WB29 - WB45