SINGULAR NEUMANN BOUNDARY PROBLEMS FOR A CLASS OF FULLY NONLINEAR PARABOLIC EQUATIONS IN ONE DIMENSION

被引:1
作者
Kagaya, Takashi [1 ]
Liu, Qing [2 ]
机构
[1] Kyushu Univ, Inst Math Ind, Fukuoka 8190395, Japan
[2] Fukuoka Univ, Fac Sci, Dept Appl Math, Fukuoka 8140180, Japan
关键词
fully nonlinear parabolic equations; power mean curvature flow; viscosity solutions; large time behavior; singular Neumann problem; MEAN-CURVATURE FLOW; DEGENERATE ELLIPTIC-EQUATIONS; ALLEN-CAHN EQUATION; VISCOSITY SOLUTIONS; GENERALIZED MOTION; CONVERGENCE; EVOLUTION; GROWTH; MODEL;
D O I
10.1137/20M1371646
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss a singular Neumann boundary problem for a class of nonlinear parabolic equations in one space dimension. Our boundary problem describes the motion of a planar curve sliding along the boundary with a zero contact angle, which can be viewed as a limiting model for the capillary phenomenon. We study the uniqueness and existence of solutions by using the viscosity solution theory. We also show the convergence of the solution to a traveling wave as time proceeds to infinity when the initial value is assumed to be convex.
引用
收藏
页码:4350 / 4385
页数:36
相关论文
共 42 条
[1]   TRANSLATING SURFACES OF THE NONPARAMETRIC MEAN-CURVATURE FLOW WITH PRESCRIBED CONTACT-ANGLE [J].
ALTSCHULER, SJ ;
WU, LF .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1994, 2 (01) :101-111
[2]   CONVERGENCE TO TRANSLATING SOLUTIONS FOR A CLASS OF QUASI-LINEAR PARABOLIC BOUNDARY-PROBLEMS [J].
ALTSCHULER, SJ ;
WU, LF .
MATHEMATISCHE ANNALEN, 1993, 295 (04) :761-765
[3]   AXIOMS AND FUNDAMENTAL EQUATIONS OF IMAGE-PROCESSING [J].
ALVAREZ, L ;
GUICHARD, F ;
LIONS, PL ;
MOREL, JM .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1993, 123 (03) :199-257
[4]  
[Anonymous], 1994, Differ. Integral Equ
[5]  
[Anonymous], DIFFER INTEGRAL EQU
[6]   Viscosity solutions of general viscous Hamilton-Jacobi equations [J].
Armstrong, Scott N. ;
Tran, Hung V. .
MATHEMATISCHE ANNALEN, 2015, 361 (3-4) :647-687
[7]   Global continuation beyond singularities on the boundary for a degenerate diffusive Hamilton-Jacobi equation [J].
Attouchi, A. ;
Barles, G. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 104 (02) :383-402
[8]   On the generalized Dirichlet problem for viscous Hamilton-Jacobi equations [J].
Barles, G ;
Da Lio, F .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2004, 83 (01) :53-75
[9]  
Barles G, 2003, INTERFACE FREE BOUND, V5, P239
[10]   Nonlinear Neumann boundary conditions for quasilinear degenerate elliptic equations and applications [J].
Barles, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 154 (01) :191-224