MULTI-SCALE GRAPH CONVOLUTIONAL INTERACTION NETWORK FOR SALIENT OBJECT DETECTION

被引:1
|
作者
Che, Wenqi [1 ]
Sun, Luoyi [1 ]
Xie, Zhifeng [1 ]
Ding, Youdong [1 ]
Han, Kaili [1 ]
机构
[1] Shanghai Univ, Shanghai, Peoples R China
来源
2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2021年
关键词
Salient object detection; graph convolutional network; multi-scale interaction;
D O I
10.1109/ICIP42928.2021.9506100
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Remarkable progress has been achieved for salient object detection based on deep learning. However, most of the previous works have the issues of how to extract more effective information from scale-varying data and how to improve the boundary quality. In this paper, we propose the multi-scale graph convolutional interaction network (MGCINet), which consists of the feature interaction module (FIM), the feature aggregation module (FAM), and the residual refinement module (RRM). FIMs fuse interactive features from neighboring scales. Based on two-layers graph convolutional network, FAMs aggregate scale-specific information by graph nodes interaction. RRMs optimize the coarse saliency maps with blurred boundaries by U-net residual blocks. In addition, we propose multi-scale weighted structural loss to assign different weights to pixels while focusing on image structure at various scales. Experiments show that our method outperforms the state-of-the-arts on five benchmark datasets under different evaluation metrics.
引用
收藏
页码:679 / 683
页数:5
相关论文
共 50 条
  • [1] Salient Object Detection with Chained Multi-Scale Fully Convolutional Network
    Tang, Youbao
    Wu, Xiangqian
    PROCEEDINGS OF THE 2017 ACM MULTIMEDIA CONFERENCE (MM'17), 2017, : 618 - 626
  • [2] Multi-scale Interactive Network for Salient Object Detection
    Pang, Youwei
    Zhao, Xiaoqi
    Zhang, Lihe
    Lu, Huchuan
    arXiv, 2020,
  • [3] Multi-Scale Cascade Network for Salient Object Detection
    Li, Xin
    Yang, Fan
    Cheng, Hong
    Chen, Junyu
    Guo, Yuxiao
    Chen, Leiting
    PROCEEDINGS OF THE 2017 ACM MULTIMEDIA CONFERENCE (MM'17), 2017, : 439 - 447
  • [4] Multi-scale deep neural network for salient object detection
    Xiao, Fen
    Deng, Wenzheng
    Peng, Liangchan
    Cao, Chunhong
    Hu, Kai
    Gao, Xieping
    IET IMAGE PROCESSING, 2018, 12 (11) : 2036 - 2041
  • [5] Multi-scale Pyramid Pooling Network for salient object detection
    Dakhia, Abdelhafid
    Wang, Tiantian
    Lu, Huchuan
    NEUROCOMPUTING, 2019, 333 : 211 - 220
  • [6] EMSNet: Extremely multi-scale network for salient object detection
    Chiheng Zhou
    Zhengkai Wang
    Yongxia Zhou
    Chen Pan
    Multimedia Tools and Applications, 2025, 84 (14) : 13545 - 13569
  • [7] Multi-scale salient object detection network combining an attention mechanism
    Liu, Di
    Guo, Jichang
    Wang, Yudong
    Zhang, Yi
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2022, 49 (04): : 118 - 126
  • [8] DMINet: dense multi-scale inference network for salient object detection
    Chenxing Xia
    Yanguang Sun
    Xiuju Gao
    Bin Ge
    Songsong Duan
    The Visual Computer, 2022, 38 : 3059 - 3072
  • [9] DMINet: dense multi-scale inference network for salient object detection
    Xia, Chenxing
    Sun, Yanguang
    Gao, Xiuju
    Ge, Bin
    Duan, Songsong
    VISUAL COMPUTER, 2022, 38 (9-10): : 3059 - 3072
  • [10] Cross-Stage Multi-Scale Interaction Network for RGB-D Salient Object Detection
    Yi, Kang
    Zhu, Jinchao
    Guo, Fu
    Xu, Jing
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 2402 - 2406