p-adic dynamic systems

被引:35
作者
Albeverio, S [1 ]
Khrennikov, A
Tirozzi, B
De Smedt, S
机构
[1] Ruhr Univ Bochum, Inst Math, D-44780 Bochum, Germany
[2] Essen Bochum Dusseldorf, Dusseldorf, Germany
[3] BiBoS Res Ctr, D-33615 Bielefeld, Germany
[4] CERFIM, Locarno, Switzerland
[5] Univ Vaxjo, Dept Math, S-35195 Vaxjo, Sweden
[6] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
[7] Free Univ Brussels, Fac Toegepaste Wetenschappen, B-1050 Brussels, Belgium
关键词
Prime Number; Periodic Point; Siegel Disk; Cyclic Attractor; Invariant Sphere;
D O I
10.1007/BF02575441
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Dynamic systems in non-Archimedean number fields (i.e., fields with non-Archimedean valuations) are studied. Results are obtained for the fields of p-adic numbers and complex p-adic numbers. Simple p-adic dynamic systems have a very rich structure-attractors, Siegel disks, cycles, and a new structure called a "fuzzy cycle." The prime number p plays the role of a parameter of the p-adic dynamic system. Changing p radically changes the behavior of the system: attractors may become the centers of Siegel disks, and vice versa, and cycles of different lengths may appear or disappear.
引用
收藏
页码:276 / 287
页数:12
相关论文
共 24 条
  • [1] p-adic Hilbert space representation of quantum systems with an infinite number of degrees of freedom
    Albeverio, S
    Khrennikov, A
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1996, 10 (13-14): : 1665 - 1673
  • [2] Representations of the Weyl group in spaces of square integrable functions with respect to p-adic valued Gaussian distributions
    Albeverio, S
    Khrennikov, A
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (17): : 5515 - 5527
  • [3] ALBEVERIO S, 1997, P ADIC NEURAL NETWOR
  • [4] [Anonymous], 1992, Chaos and Fractals
  • [5] [Anonymous], 1994, P ADIC ANAL MATH PHY
  • [6] THE WAVE-FUNCTION OF THE UNIVERSE AND P-ADIC GRAVITY
    AREFEVA, IY
    DRAGOVICH, B
    FRAMPTON, PH
    VOLOVICH, IV
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1991, 6 (24): : 4341 - 4358
  • [7] DESMEDT S, IN PRESS MATH ED RES
  • [8] DRAGOVIC B, 1995, P 3 A FRIEDM INT SEM
  • [9] ADELIC HARMONIC-OSCILLATOR
    DRAGOVICH, B
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1995, 10 (16): : 2349 - 2365
  • [10] ESCASSUT A, 1995, ANAL ELEMENTS P ADIC