Very special divisors on real algebraic curves

被引:1
作者
Monnier, Jean-Philippe [1 ]
机构
[1] Univ Angers, Dept Math, F-49045 Angers 01, France
关键词
D O I
10.1112/blms/bdq036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study special linear systems called 'very special' whose dimension does not satisfy a Clifford-type inequality given by Huisman. We classify all these very special linear systems when they are compounded of an involution. Examples of very special linear systems that are simple are also given.
引用
收藏
页码:741 / 752
页数:12
相关论文
共 11 条
[1]  
Arbarello E., 1985, Grundlehren der Mathematischen Wissenschaften, V267
[2]  
BOCHNAK J, 1987, ERGEBNISSE MATH IHRE, V3, P12
[3]   MINIMAL GENUS OF KLEIN SURFACES ADMITTING AN AUTOMORPHISM OF A GIVEN ORDER [J].
BUJALANCE, E ;
ETAYO, JJ ;
GAMBOA, JM ;
MARTENS, G .
ARCHIV DER MATHEMATIK, 1989, 52 (02) :191-202
[4]   Double coverings of hyperelliptic real algebraic curves [J].
Bujalance, E. ;
Cirre, F. J. ;
Gamboa, J. M. .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2008, 212 (09) :2011-2026
[5]   TOPOLOGICAL TYPES OF P-HYPERELLIPTIC REAL ALGEBRAIC-CURVES [J].
BUJALANCE, E ;
ETAYO, JJ ;
GAMBOA, JM .
MATHEMATISCHE ZEITSCHRIFT, 1987, 194 (02) :275-283
[6]  
Farkas HM., 1992, RIEMANN SURFACES, DOI DOI 10.1007/978-1-4612-2034-3
[7]  
GROSS BH, 1981, ANN SCI ECOLE NORM S, V14, P157
[8]  
Hartshorne R., 2013, Grad. Texts in Math., V52
[9]   Clifford's Inequality for real algebraic curves [J].
Huisman, J .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2003, 14 (02) :197-205
[10]  
KLEIN F, 1893, MATH ANN, V42, P1