Simulations of Nanoscale Room Temperature Waveguide-Coupled Single-Photon Avalanche Detectors for Silicon Photonic Sensing and Quantum Applications

被引:14
作者
Soref, R. A. [1 ]
De Leonardis, F. [2 ]
Passaro, V. M. N. [2 ]
机构
[1] Univ Massachusetts, Dept Engn, Boston, MA 02125 USA
[2] Politecn Bari, Dipartimento Ingn Elettr & Informaz, Photon Res Grp, Via Edoardo Orabona 4, I-70125 Bari, Italy
关键词
photodetector; avalanche photodiode; silicon photonics; photonic integrated circuits; optoelectronic and photonic device; SI; VOLTAGE;
D O I
10.1021/acsanm.9b01453
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Photonic qubits can represent an ideal choice in quantum information science since photons travel at the speed of light and interact weakly with the environment over long distances. In this context, technological platforms allowing the development and implementation of chip-scale integrated photonics represent a possible solution toward scalable quantum networking schemes. However, at present, most examples of integrated quantum photonics still require the coupling of light to external photodetectors operating at very low temperatures. In this paper, we demonstrate that the GeSn/Si-in-SOI technological platform can be a good candidate to realize integrated single-photon avalanche detectors (SPADs), operating at room temperature. Thus, we report the design and simulation of waveguide-based SPADs for operation at 1550 and 2000 nm wavelengths. We calculate the breakdown voltage, the dark count rate (DCR), the single photon detection efficiency (SPDE), the noise equivalent power (NEP), the dark count, and the afterpulsing probabilities by simulating the avalanche process and the statistical features in a self-consistent way. The PIPIN SPAD performance parameters are estimated as a function of the GeSn's threading dislocation density and of the temperature. We also demonstrate that for operation at 1550 and 2000 nm wavelengths with the 220 nm GeSn separate absorber film centered in the 250 nm high Si waveguide end, it is possible to cover a number of applications at room or near room temperature, ranging from ultrasensitive LIDAR to quantum communications, metrology, sensing, and key distribution.
引用
收藏
页码:7503 / 7512
页数:19
相关论文
共 26 条
[1]   Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation [J].
Akhlaghi, Mohsen K. ;
Schelew, Ellen ;
Young, Jeff F. .
NATURE COMMUNICATIONS, 2015, 6
[2]  
[Anonymous], 2005, COMS MULT SINGL LIC
[3]   Strain-Balanced GezSn1-z-SixGeySn1-x-y Multiple-Quantum-Well Lasers [J].
Chang, Guo-En ;
Chang, Shu-Wei ;
Chuang, Shun Lien .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2010, 46 (12) :1813-1820
[4]   Optical constants and interband transitions of Ge1-xSnx alloys (x<0.2) grown on Si by UHV-CVD [J].
Cook, CS ;
Zollner, S ;
Bauer, MR ;
Aella, P ;
Kouvetakis, J ;
Menendez, J .
THIN SOLID FILMS, 2004, 455 :217-221
[5]   High-speed photon-counting laser ranging for broad range of distances [J].
Du, Bingcheng ;
Pang, Chengkai ;
Wu, Di ;
Li, Zhaohui ;
Peng, Huan ;
Tao, Yuliang ;
Wu, E. ;
Wu, Guang .
SCIENTIFIC REPORTS, 2018, 8
[6]   Invited Review Article: Single-photon sources and detectors [J].
Eisaman, M. D. ;
Fan, J. ;
Migdall, A. ;
Polyakov, S. V. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2011, 82 (07)
[7]   Photonic quantum information processing: a review [J].
Flamini, Fulvio ;
Spagnolo, Nicolo ;
Sciarrino, Fabio .
REPORTS ON PROGRESS IN PHYSICS, 2019, 82 (01)
[8]   Compact solid-state CMOS single-photon detector array for in vivo NIR fluorescence lifetime oncology measurements [J].
Homulle, H. A. R. ;
Powolny, F. ;
Stegehuis, P. L. ;
Dijkstra, J. ;
Li, D. -U. ;
Homicsko, K. ;
Rimoldi, D. ;
Muehlethaler, K. ;
Prior, J. O. ;
Sinisi, R. ;
Dubikovskaya, E. ;
Charbon, E. ;
Bruschini, C. .
BIOMEDICAL OPTICS EXPRESS, 2016, 7 (05) :1797-1814
[9]  
Huang M., 2018, IEEE J SEL TOP QUANT, V24
[10]   25 Gbps low-voltage waveguide Si-Ge avalanche photodiode [J].
Huang, Zhihong ;
Li, Cheng ;
Liang, Di ;
Yu, Kunzhi ;
Santori, Charles ;
Fiorentino, Marco ;
Sorin, Wayne ;
Palermo, Samuel ;
Beausoleil, Raymond G. .
OPTICA, 2016, 3 (08) :793-798