Existence of solutions for perturbed fourth order elliptic equations with variable exponents

被引:13
作者
Nguyen Thanh Chung [1 ]
机构
[1] Quang Binh Univ, Dept Math, 312 Ly Thuong Kiet, Dong Hoi, Quang Binh, Vietnam
关键词
fourth order elliptic equations; Kirchhoff type problems; variable exponents; variational methods; KIRCHHOFF TYPE; NONNEGATIVE SOLUTIONS; SOBOLEV SPACES; MULTIPLICITY; LEBESGUE;
D O I
10.14232/ejqtde.2018.1.96
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using variational methods, we study the existence and multiplicity of solutions for a class of fourth order elliptic equations of the form {Delta(2)(p(x))u - M (integral(Omega)1/p(x)vertical bar del u vertical bar(p(x))dx) Delta(p(x))u = f(x, u) in Omega, u = Delta u = 0 an partial derivative Omega, where Omega subset of R-N, N >= 3, is a smooth bounded domain, Delta(2)(p(x))u = Delta(vertical bar Delta u vertical bar(p(x)-2) Delta u) is the operator of fourth order called the p(x)-biharmonic operator, Delta(p(x)) u = div (vertical bar del u vertical bar(p(x)-2)del u) is the p(x)-Laplacian, p : (Omega) over bar -> R is a log-Holder continuous function, M : [0, +infinity) -> R and f : Omega x R -> R are two continuous functions satisfying some certain conditions.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 43 条