Fermi energy in the q-deformed quantum mechanics

被引:9
作者
Chung, Won Sang [1 ,2 ]
Hassanabadi, Hassan [3 ]
机构
[1] Gyeongsang Natl Univ, Coll Nat Sci, Dept Phys, Jinju 660701, South Korea
[2] Gyeongsang Natl Univ, Coll Nat Sci, Res Inst Nat Sci, Jinju 660701, South Korea
[3] Shahrood Univ Technol, Fac Phys, Shahrood, Iran
关键词
q-derivative; non-extensive statistical physics; Fermi energy; GENERALIZED UNCERTAINTY PRINCIPLE; Q-ANALOG; ALGEBRA;
D O I
10.1142/S0217732320500741
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper, we use the q-derivative emerging in the non-extensive statistical physics to formulate the q-deformed quantum mechanics. We find the algebraic structure related to this deformed theory and investigate some properties of the q-deformed elementary functions. Using this mathematical background, we formulate the q-deformed Heisenberg algebra and q-deformed time-dependent Schrodinger equation. As an example, we deal with the infinite potential well and compute the Fermi energy in the q-deformed theory.
引用
收藏
页数:15
相关论文
共 22 条
[1]   HILBERT SPACES OF ANALYTIC-FUNCTIONS AND GENERALIZED COHERENT STATES [J].
ARIK, M ;
COON, DD .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (04) :524-527
[2]   THE QUANTUM GROUP SUQ(2) AND A Q-ANALOGUE OF THE BOSON OPERATORS [J].
BIEDENHARN, LC .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (18) :L873-L878
[3]   A possible deformed algebra and calculus inspired in nonextensive thermostatistics [J].
Borges, EP .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 340 (1-3) :95-101
[4]  
Borozov E., ARXIVQALG9509022
[5]   Statistical physics: A fresh take on disorder, or disorderly science? [J].
Cho, A .
SCIENCE, 2002, 297 (5585) :1268-1269
[6]   GENERALIZED DEFORMED ALGEBRA [J].
CHUNG, WS ;
CHUNG, KS ;
NAM, ST ;
UM, CI .
PHYSICS LETTERS A, 1993, 183 (5-6) :363-370
[7]   GENERALIZED STATISTICAL-MECHANICS - CONNECTION WITH THERMODYNAMICS [J].
CURADO, EMF ;
TSALLIS, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (02) :L69-L72
[8]  
DRINFELD VG, 1987, P INT C MATH BERKELE, V1, P798
[9]  
Jackson FH., 1909, Messenger of Mathematics, V38, P57
[10]  
JIMBO M, 1986, LETT MATH PHYS, V11, P247, DOI 10.1007/BF00400222