Berezinskii-Kosterlitz-Thouless-like percolation transitions in the two-dimensional XY model

被引:6
作者
Hu, Hao [1 ]
Deng, Youjin [1 ]
Blote, Henk W. J. [2 ,3 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Dept Modern Phys, Hefei 230027, Peoples R China
[2] Leiden Univ, Inst Lorentz, NL-2300 RA Leiden, Netherlands
[3] Delft Univ Technol, Fac Sci Appl, NL-2600 GA Delft, Netherlands
来源
PHYSICAL REVIEW E | 2011年 / 83卷 / 01期
关键词
LONG-RANGE ORDER; MONTE-CARLO; ISING-MODEL; ROUGHENING TRANSITION; PHASE-TRANSITIONS; COULOMB GAS; SYMMETRY; RENORMALIZATION; CLUSTERS; SYSTEMS;
D O I
10.1103/PhysRevE.83.011124
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study a percolation problem on a substrate formed by two-dimensional XY spin configurations using Monte Carlo methods. For a given spin configuration, we construct percolation clusters by randomly choosing a direction x in the spin vector space, and then placing a percolation bond between nearest-neighbor sites i and j with probability p(ij) = max(0,1 - e(-2Ksixsjx)), where K > 0 governs the percolation process. A line of percolation thresholds K-c(J) is found in the low-temperature range J >= J(c), where J > 0 is the XY coupling strength. Analysis of the correlation function g(p)(r), defined as the probability that two sites separated by a distance r belong to the same percolation cluster, yields algebraic decay for K >= K-c(J), and the associated critical exponent depends on J and K. Along the threshold line Kc (J), the scaling dimension for g(p) is, within numerical uncertainties, equal to 1/8. On this basis, we conjecture that the percolation transition along the K-c(J) line is of the Berezinskii-Kosterlitz-Thouless type.
引用
收藏
页数:9
相关论文
共 46 条
[11]   CLUSTERS AND DROPLETS IN THE Q-STATE POTTS-MODEL [J].
CONIGLIO, A ;
PERUGGI, F .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (06) :1873-1883
[12]   CLUSTERS AND ISING CRITICAL DROPLETS - A RENORMALIZATION GROUP-APPROACH [J].
CONIGLIO, A ;
KLEIN, W .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (08) :2775-2780
[13]   PERCOLATION POINTS AND CRITICAL-POINT IN ISING-MODEL [J].
CONIGLIO, A ;
NAPPI, CR ;
PERUGGI, F ;
RUSSO, L .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1977, 10 (02) :205-218
[14]  
Deng YJ, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.056132
[15]   Geometric properties of two-dimensional critical and tricritical Potts models -: art. no. 026123 [J].
Deng, YJ ;
Blöte, HWJ ;
Nienhuis, B .
PHYSICAL REVIEW E, 2004, 69 (02) :026123-1
[16]   Percolation and critical O(n) loop configurations [J].
Ding, Chengxiang ;
Deng, Youjin ;
Guo, Wenan ;
Blote, Henk W. J. .
PHYSICAL REVIEW E, 2009, 79 (06)
[17]   DUALITY RELATIONS AND EQUIVALENCES FOR MODELS WITH O(N) AND CUBIC SYMMETRY [J].
DOMANY, E ;
MUKAMEL, D ;
NIENHUIS, B ;
SCHWIMMER, A .
NUCLEAR PHYSICS B, 1981, 190 (02) :279-287
[18]  
Essam J.W., 1972, PHASE TRANSITIONS CR, V2, P197
[19]   Percolation transitions in two dimensions [J].
Feng, Xiaomei ;
Deng, Youjin ;
Blote, Henk W. J. .
PHYSICAL REVIEW E, 2008, 78 (03)
[20]   RANDOM-CLUSTER MODEL .1. INTRODUCTION AND RELATION TO OTHER MODELS [J].
FORTUIN, CM ;
KASTELEYN, PW .
PHYSICA, 1972, 57 (04) :536-+