Berezinskii-Kosterlitz-Thouless-like percolation transitions in the two-dimensional XY model

被引:6
作者
Hu, Hao [1 ]
Deng, Youjin [1 ]
Blote, Henk W. J. [2 ,3 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Dept Modern Phys, Hefei 230027, Peoples R China
[2] Leiden Univ, Inst Lorentz, NL-2300 RA Leiden, Netherlands
[3] Delft Univ Technol, Fac Sci Appl, NL-2600 GA Delft, Netherlands
来源
PHYSICAL REVIEW E | 2011年 / 83卷 / 01期
关键词
LONG-RANGE ORDER; MONTE-CARLO; ISING-MODEL; ROUGHENING TRANSITION; PHASE-TRANSITIONS; COULOMB GAS; SYMMETRY; RENORMALIZATION; CLUSTERS; SYSTEMS;
D O I
10.1103/PhysRevE.83.011124
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study a percolation problem on a substrate formed by two-dimensional XY spin configurations using Monte Carlo methods. For a given spin configuration, we construct percolation clusters by randomly choosing a direction x in the spin vector space, and then placing a percolation bond between nearest-neighbor sites i and j with probability p(ij) = max(0,1 - e(-2Ksixsjx)), where K > 0 governs the percolation process. A line of percolation thresholds K-c(J) is found in the low-temperature range J >= J(c), where J > 0 is the XY coupling strength. Analysis of the correlation function g(p)(r), defined as the probability that two sites separated by a distance r belong to the same percolation cluster, yields algebraic decay for K >= K-c(J), and the associated critical exponent depends on J and K. Along the threshold line Kc (J), the scaling dimension for g(p) is, within numerical uncertainties, equal to 1/8. On this basis, we conjecture that the percolation transition along the K-c(J) line is of the Berezinskii-Kosterlitz-Thouless type.
引用
收藏
页数:9
相关论文
共 46 条
[1]   RENORMALIZATION GROUP-ANALYSIS OF THE PHASE-TRANSITION IN THE 2D COULOMB GAS, SINE-GORDON THEORY AND XY-MODEL [J].
AMIT, DJ ;
GOLDSCHMIDT, YY ;
GRINSTEIN, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (02) :585-620
[2]  
[Anonymous], 1999, PERCOLATION
[3]  
[Anonymous], 1987, Phase Transitions and Critical Phenomena
[4]   High-temperature expansion of the magnetic susceptibility and higher moments of the correlation function for the two-dimensional XY model [J].
Arisue, H. .
PHYSICAL REVIEW E, 2009, 79 (01)
[5]   Phase transition with the Berezinskii-Kosterlitz-Thouless singularity in the Ising model on a growing network [J].
Bauer, M ;
Coulomb, S ;
Dorogovtsev, SN .
PHYSICAL REVIEW LETTERS, 2005, 94 (20)
[6]  
BEREZINSKII VL, 1971, SOV PHYS JETP-USSR, V32, P493
[7]   FINITE SIZE SCALING ANALYSIS OF ISING-MODEL BLOCK DISTRIBUTION-FUNCTIONS [J].
BINDER, K .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1981, 43 (02) :119-140
[8]   STUDY OF SUPERFLUID TRANSITION IN 2-DIMENSIONAL HE-4 FILMS [J].
BISHOP, DJ ;
REPPY, JD .
PHYSICAL REVIEW LETTERS, 1978, 40 (26) :1727-1730
[9]   High-accuracy estimates of the critical parameters for the XY model on the square and the triangular lattices using the high-temperature expansions [J].
Butera, P. ;
Pernici, M. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (25) :6293-6298
[10]  
CARDY J, 1987, PHASE TRANSITIONS CR, V11