Quantum antibrackets

被引:30
作者
Batalin, I [1 ]
Marnelius, R [1 ]
机构
[1] Gothenburg Univ, Chalmers Univ Technol, Inst Theoret Phys, S-41296 Gothenburg, Sweden
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1016/S0370-2693(98)00709-6
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A binary expression in terms of operators is given which satisfies all the quantum counterparts of the algebraic properties of the classical antibracket. This quantum antibracket has therefore the same relation to the classical antibracket as commutators to Poisson brackets. It is explained how this quantum antibracket is related to the classical antibracket and the Delta-operator in the BV-quantization. Higher quantum antibrackets are introduced in terms of generating operators, which automatically yield all their subsequent Jacobi identities as well as the consistent Leibniz' rules. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:312 / 320
页数:9
相关论文
共 25 条
[1]  
AKMAN F, QALG9506027
[2]   Non-Abelian antibrackets [J].
Alfaro, J ;
Damgaard, PH .
PHYSICS LETTERS B, 1996, 369 (3-4) :289-294
[3]   General triplectic quantization [J].
Batalin, I ;
Marnelius, R .
NUCLEAR PHYSICS B, 1996, 465 (03) :521-539
[4]   SOLVING GENERAL GAUGE-THEORIES ON INNER-PRODUCT SPACES [J].
BATALIN, I ;
MARNELIUS, R .
NUCLEAR PHYSICS B, 1995, 442 (03) :669-695
[5]   REMARKS ON THE SP(2)-COVARIANT LAGRANGIAN QUANTIZATION OF GAUGE-THEORIES [J].
BATALIN, IA ;
LAVROV, PM ;
TYUTIN, IV .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (09) :2513-2521
[6]   AN SP(2)-COVARIANT QUANTIZATION OF GAUGE-THEORIES WITH LINEARLY DEPENDENT GENERATORS [J].
BATALIN, IA ;
LAVROV, PM ;
TYUTIN, IV .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (02) :532-539
[7]   COVARIANT QUANTIZATION OF GAUGE-THEORIES IN THE FRAMEWORK OF EXTENDED BRST SYMMETRY [J].
BATALIN, IA ;
LAVROV, PM ;
TYUTIN, IV .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (06) :1487-1493
[8]   ON POSSIBLE GENERALIZATIONS OF FIELD-ANTIFIELD FORMALISM [J].
BATALIN, IA ;
TYUTIN, IV .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1993, 8 (13) :2333-2350
[9]   Gauge independence of the Lagrangian path integral in a higher-order formalism [J].
Batalin, IA ;
Bering, K ;
Damgaard, PH .
PHYSICS LETTERS B, 1996, 389 (04) :673-676
[10]   TRIPLECTIC QUANTIZATION - A GEOMETRICALLY COVARIANT DESCRIPTION OF THE SP(2)-SYMMETRICAL LAGRANGIAN-FORMALISM [J].
BATALIN, IA ;
MARNELIUS, R ;
SEMIKHATOV, AM .
NUCLEAR PHYSICS B, 1995, 446 (1-2) :249-285