Model Identification using Continuous Glucose Monitoring Data for Type 1 Diabetes

被引:20
作者
Boiroux, Dimitri [1 ,2 ]
Hagdrup, Morten [1 ]
Mahmoudi, Zeinab [1 ,2 ]
Poulsen, Niels Kjolstad [1 ]
Madsen, Henrik [1 ]
Jorgensen, John Bagterp [1 ]
机构
[1] Tech Univ Denmark, Dept Appl Math & Comp Sci, DK-2800 Lyngby, Denmark
[2] Odense Univ Hosp, Danish Diabet Acad, DK-5000 Odense C, Denmark
来源
IFAC PAPERSONLINE | 2016年 / 49卷 / 07期
关键词
Type; 1; diabetes; parameter identification; continuous glucose monitoring; least squares; Huber regression; maximum likelihood; PREDICTIVE CONTROL; INSULIN;
D O I
10.1016/j.ifacol.2016.07.279
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper addresses model identification of continuous-discrete nonlinear models for people with type 1 diabetes using sampled data from a continuous glucose monitor (CGM). compare five identification techniques: least squares, weighted least squares, Huber regression, maximum likelihood with extended Kalman filter and maximum likelihood with unscented Kalman filter. We perform the identification on a 24-hour simulation of a stochastic differential equation (SDE) version of the Medtronic Virtual Patient (MVP) model including process and output noise. We compare the fits with Hie actual CCM signal, as well as the short- and long-term predictions for each identified model. The numerical results show that the maximum likelihood-based identification techniques offer the best performance in terms of fitting and prediction. Moreover, they have other advantages compared to ODE-based modeling, such as parameter tracking, population modeling, and handling of outliers. (C) 2016, IFAC (International Federation of Automatic Control) hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:759 / 764
页数:6
相关论文
共 28 条
  • [1] Bagterp Jorgensen John, 2007, 2007 American Control Conference, P140
  • [2] Bátora V, 2015, P AMER CONTR CONF, P5097, DOI 10.1109/ACC.2015.7172134
  • [3] PHYSIOLOGIC EVALUATION OF FACTORS CONTROLLING GLUCOSE-TOLERANCE IN MAN - MEASUREMENT OF INSULIN SENSITIVITY AND BETA-CELL GLUCOSE SENSITIVITY FROM THE RESPONSE TO INTRAVENOUS GLUCOSE
    BERGMAN, RN
    PHILLIPS, LS
    COBELLI, C
    [J]. JOURNAL OF CLINICAL INVESTIGATION, 1981, 68 (06) : 1456 - 1467
  • [4] Boiroux Dimitri, 2015, IFAC - Papers Online, V48, P7, DOI 10.1016/j.ifacol.2015.10.106
  • [5] Boiroux D., 2010, P 9 INT S DYN CONTR, P234
  • [6] Boiroux D., 2010, S NONL CONTR SYST 20
  • [7] Boiroux D., 2010, Recent Advances in Optimization and its Applications in Engineering, P299
  • [8] Duun-Henriksen Anne Katrine, 2013, J Diabetes Sci Technol, V7, P431
  • [9] The Unscented Kalman Filter estimates the plasma insulin from glucose measurement
    Eberle, Claudia
    Ament, Christoph
    [J]. BIOSYSTEMS, 2011, 103 (01) : 67 - 72
  • [10] Modeling the Glucose Sensor Error
    Facchinetti, Andrea
    Del Favero, Simone
    Sparacino, Giovanni
    Castle, Jessica R.
    Ward, W. Kenneth
    Cobelli, Claudio
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2014, 61 (03) : 620 - 629