Vehicle platoon formation using interpolating control: A laboratory experimental analysis

被引:62
作者
Tuchner, Alon [1 ]
Haddad, Jack [1 ]
机构
[1] Technion Israel Inst Technol, Fac Civil & Environm Engn, T SMART, Haifa, Israel
关键词
Platoon formation; Interpolating control; Autonomous vehicles; ADAPTIVE CRUISE CONTROL; MODEL-PREDICTIVE CONTROL; TRAFFIC-FLOW; LONGITUDINAL CONTROL; CONTROL DESIGN; SYSTEMS; STATE; STABILITY; AUTOMATION; UNCERTAIN;
D O I
10.1016/j.trc.2017.06.019
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
This work addresses the formation phase of automatic platooning. The objective is to optimally control the throttle of vehicles, with a given arbitrary initial condition, such that desired ground speed and inter-vehicular spacings are reached. The steering of the vehicles is also controlled, because the vehicles should track a desired path while forming the platoon. In order to address the platoon formation problem, a cooperative strategy is formed by constructing a discrete state space model which represents the dynamics of a set of n vehicles. Once this model is set, a control method known as Interpolating Control, which aims at regulating to the origin an uncertain and/or time-varying linear discrete-time system with state and control constraints, is utilized. The performance of this control method is evaluated and compared with other approaches such as Model Predictive Control (MPC). Simulations are conducted which suggest that the Interpolating Control approach can be seen as an alternative to optimization-based control schemes such as Model Predictive Control, especially for problems for which finding the optimal solution requires calculations, where the Interpolating Control approach can provide a straightforward suboptimal solution. In the experimental part of this work, the control algorithms for the platoon formation and path tracking problems are combined, and tested in a laboratory environment, using three mobile robots equipped with wireless routers. Validation of the proposed models and control algorithms is achieved by successful experiments. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:21 / 47
页数:27
相关论文
共 56 条
[1]   Experimental evaluation of decentralized cooperative cruise control for heavy-duty vehicle platooning [J].
Alam, Assad ;
Martensson, Jonas ;
Johansson, Karl H. .
CONTROL ENGINEERING PRACTICE, 2015, 38 :11-25
[2]  
[Anonymous], 2013, Advanced Textbooks in Control and Signal Processing
[3]  
[Anonymous], 2002, Predictive Control: With Constraints
[4]  
[Anonymous], 2013, Traffic flow dynamics: Data, models and simulation
[5]  
[Anonymous], 1992, TECH REP
[6]   A fuzzy-logic-based approach for mobile robot path tracking [J].
Antonelli, Gianluca ;
Chiaverini, Stefano ;
Fusco, Giuseppe .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2007, 15 (02) :211-221
[7]  
Bechlioulis CP, 2014, IEEE DECIS CONTR P, P3689, DOI 10.1109/CDC.2014.7039963
[8]   Min-max control of constrained uncertain discrete-time linear systems [J].
Bemporad, A ;
Borrelli, F ;
Morari, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (09) :1600-1606
[9]  
Blanchini F, 2008, SYST CONTROL-FOUND A, P1
[10]   Analysis of traffic flow with mixed manual and semiautomated vehicles [J].
Bose, A ;
Ioannou, PA .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2003, 4 (04) :173-188