Rational Solutions of a Weakly Coupled Nonlocal Nonlinear Schrodinger Equation

被引:8
作者
Zhou, Huijuan [1 ]
Li, Chuanzhong [1 ]
Lin, Yueh-Lung [2 ]
机构
[1] Ningbo Univ, Dept Math, Ningbo 315211, Zhejiang, Peoples R China
[2] Univ Nottingham, Sch Math Sci, Ningbo 315100, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
NON-HERMITIAN HAMILTONIANS; SYMMETRY; SOLITONS; REAL;
D O I
10.1155/2018/9216286
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this article, we investigate an integrable weakly coupled nonlocal nonlinear Schrodinger (WCNNIS) equation including its Lax pair. Afterwards, Darboux transformation (DT) of the weakly coupled nonlocal NLS equation is constructed, and then the degenerated Darboux transformation can be got from Darboux transformation. Applying the degenerated Darboux transformation, the new solutions (q([1]), r([1])) and self-potential function (V-[1]) are created from the known solutions (q, r). The (q([1]), r([1])) satisfy the parity-time (PT) symmetry condition, and they are rational solutions with two free phase parameters of the weakly coupled nonlocal nonlinear Schrodinger equation. From the plots of solutions, the compression effects of the real refractive index profile and the gain-or-loss distribution arc produced.
引用
收藏
页数:12
相关论文
共 33 条
[1]   Integrable Nonlocal Nonlinear Schrodinger Equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
PHYSICAL REVIEW LETTERS, 2013, 110 (06)
[2]  
Agrawal G. P., 2019, Nonlinear Fiber Optics, V6th
[3]   Non-Hermitian Hamiltonians with real and complex eigenvalues in a Lie-algebraic framework [J].
Bagchi, B ;
Quesne, C .
PHYSICS LETTERS A, 2002, 300 (01) :18-26
[4]   TRACKING DOWN LOCALIZED MODES IN PT-SYMMETRIC HAMILTONIANS UNDER THE INFLUENCE OF A COMPETING NONLINEARITY [J].
Bagchi, Bijan ;
Modak, Subhrajit ;
Panigrahi, Prasanta K. .
ACTA POLYTECHNICA, 2014, 54 (02) :79-84
[5]   Faster than hermitian quantum mechanics [J].
Bender, Carl M. ;
Brody, Dorje C. ;
Jones, Hugh F. ;
Meister, Bernhard K. .
PHYSICAL REVIEW LETTERS, 2007, 98 (04)
[6]   Making sense of non-Hermitian Hamiltonians [J].
Bender, Carl M. .
REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (06) :947-1018
[7]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[8]   PROPAGATION OF NONLINEAR WAVE ENVELOPES [J].
BENNEY, DJ ;
NEWELL, AC .
JOURNAL OF MATHEMATICS AND PHYSICS, 1967, 46 (02) :133-&
[9]   Surface plasmon-polariton amplifiers and lasers [J].
Berini, Pierre ;
De Leon, Israel .
NATURE PHOTONICS, 2012, 6 (01) :16-24
[10]  
Chong Y. D., 2012, PHYS REV LETT, V108