Ionic Conductivity and Cycling Stability Improvement of PVDF/Nano-Clay Using PVP as Polymer Electrolyte Membranes for LiFePO4 Batteries

被引:50
作者
Dyartanti, Endah R. [1 ,2 ]
Purwanto, Agus [2 ]
Widiasa, I. Nyoman [1 ,3 ]
Susanto, Heru [1 ,3 ]
机构
[1] Diponegoro Univ, Dept Chem Engn, Semarang 50275, Indonesia
[2] Univ Sebelas Maret, Dept Chem Engn, Surakarta 57126, Indonesia
[3] Diponegoro Univ, Membrane Res Ctr, Semarang 50275, Indonesia
关键词
polymer electrolyte membranes; nano-clay; poly(vinylpyrrolidone); PVDF membranes; PORE-FORMING AGENT; ELECTROCHEMICAL PROPERTIES; POLY(VINYLIDENE FLUORIDE-CO-HEXAFLUOROPROPYLENE); MICROPOROUS MEMBRANE; GEL ELECTROLYTES; PHASE-SEPARATION; CERAMIC FILLERS; PERFORMANCE; LIQUID; POLYACRYLONITRILE;
D O I
10.3390/membranes8030036
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In this paper, we present the characteristics and performance of polymer electrolyte membranes (PEMs) based on poly(vinylidene fluoride) (PVDF). The membranes were prepared via a phase-inversion method (non-solvent-induced phase separation (NIPS)). As separators for lithium battery systems, additive modified montmorillonite (MMT) nano-clay served as a filler and poly(vinylpyrrolidone) (PVP) was used as a pore-forming agent. The membranes modified with an additive (8 wt % nano-clay and 7 wt % PVP) showed an increased porosity (87%) and an uptake of a large amount of electrolyte (801.69%), which generated a high level of ionic conductivity (5.61 mS cm(-1)) at room temperature. A graphite/PEMs/LiFePO4 coin cell CR2032 showed excellent stability in cycling performance (average discharge capacity 127 mA h g(-1)). Based on these results, PEMs are promising materials to be used in Polymer Electrolyte Membranes in lithium-ion batteries.
引用
收藏
页数:15
相关论文
共 46 条
[1]   KINETICS AND STABILITY OF THE LITHIUM ELECTRODE IN POLY(METHYLMETHACRYLATE)-BASED GEL ELECTROLYTES [J].
APPETECCHI, GB ;
CROCE, F ;
SCROSATI, B .
ELECTROCHIMICA ACTA, 1995, 40 (08) :991-997
[2]   Battery separators [J].
Arora, P ;
Zhang, ZM .
CHEMICAL REVIEWS, 2004, 104 (10) :4419-4462
[3]   Exploring the synergetic effects of graphene oxide (GO) and polyvinylpyrrodione (PVP) on poly(vinylylidenefluoride) (PVDF) ultrafiltration membrane performance [J].
Chang, Xiaojing ;
Wang, Zhenxing ;
Quan, Shuai ;
Xu, Yanchao ;
Jiang, Zaixing ;
Shao, Lu .
APPLIED SURFACE SCIENCE, 2014, 316 :537-548
[4]   Ionic conductivity enhancement of the plasticized PMMA/LiClO4 polymer nanocomposite electrolyte containing clay [J].
Chen, HW ;
Lin, TP ;
Chang, FC .
POLYMER, 2002, 43 (19) :5281-5288
[5]   Enhancement of ion transport in polymer electrolytes by addition of nanoscale inorganic oxides [J].
Chung, SH ;
Wang, Y ;
Persi, L ;
Croce, F ;
Greenbaum, SG ;
Scrosati, B ;
Plichta, E .
JOURNAL OF POWER SOURCES, 2001, 97-8 :644-648
[6]   Effect of degree of porosity on the properties of poly(vinylidene fluoride-trifluorethylene) for Li-ion battery separators [J].
Costa, C. M. ;
Rodrigues, L. C. ;
Sencadas, V. ;
Silva, M. M. ;
Rocha, J. G. ;
Lanceros-Mendez, S. .
JOURNAL OF MEMBRANE SCIENCE, 2012, 407 :193-201
[7]   Electrical and electrochemical studies of poly(vinylidene fluoride)-clay nanocomposite gel polymer electrolytes for Li-ion batteries [J].
Deka, M. ;
Kumar, A. .
JOURNAL OF POWER SOURCES, 2011, 196 (03) :1358-1364
[8]   Enhanced electrical and electrochemical properties of PMMA-clay nanocomposite gel polymer electrolytes [J].
Deka, M. ;
Kumar, A. .
ELECTROCHIMICA ACTA, 2010, 55 (05) :1836-1842
[9]   Effect of ionic liquid on the properties of poly(vinylidene fluoride)-based gel polymer electrolytes [J].
Dong, Zhen ;
Zhang, Qilu ;
Yu, Chuhong ;
Peng, Jing ;
Ma, Jun ;
Ju, Xuecheng ;
Zhai, Maolin .
IONICS, 2013, 19 (11) :1587-1593
[10]   Structural elucidation of morphology and performance of the PVDF/PEG membrane [J].
Fadaei, Amir ;
Salimi, Ali ;
Mirzataheri, Mojgan .
JOURNAL OF POLYMER RESEARCH, 2014, 21 (09)