Weakly computable real numbers

被引:53
作者
Ambos-Spies, K
Weihrauch, K
Zheng, XZ [1 ]
机构
[1] BTU Cottbus, Fak 1, D-03013 Cottbus, Germany
[2] Fern Univ Hagen, D-58084 Hagen, Germany
[3] Univ Heidelberg, Inst Math, D-69120 Heidelberg, Germany
关键词
D O I
10.1006/jcom.2000.0561
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A real number x is recursively approximable if it is a limit of a computable sequence of rational numbers. If, moreover. the sequence is increasing (decreasing or simply monotonic), then x is called left computable (right computable or semi computable). x is called weakly computable if it is a difference of two left computable real numbers. We show that a real number is weakly computable if and only if there isa computable sequence (x(s))(s is an element ofN) of rational numbers which converges to x weakly effectively, namely the sum of jumps of the sequence is bounded. It is also shown that the class of weakly computable real numbers extends properly the class of semi-computable real numbers and the class of recursively approximable real numbers extends properly the class of weakly computable real numbers. (C) 2000 Academic Press.
引用
收藏
页码:676 / 690
页数:15
相关论文
共 50 条
[41]   The Nakamura numbers for computable simple games [J].
Masahiro Kumabe ;
H. Reiju Mihara .
Social Choice and Welfare, 2008, 31 :621-640
[42]   Normal Numbers and Limit Computable Cantor Series [J].
Beros, Achilles ;
Beros, Konstantinos .
NOTRE DAME JOURNAL OF FORMAL LOGIC, 2017, 58 (02) :215-220
[43]   Computable irrational numbers with representations of surprising complexity [J].
Georgiev, Ivan ;
Kristiansen, Lars ;
Stephan, Frank .
ANNALS OF PURE AND APPLIED LOGIC, 2021, 172 (02)
[44]   ALL LYAPUNOV CHARACTERISTIC NUMBERS ARE EFFECTIVELY COMPUTABLE [J].
BENETTIN, G ;
GALGANI, L ;
GIORGILLI, A ;
STRELCYN, JM .
COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 286 (09) :431-433
[45]   ON THE COMPLEXITY OF COMPUTABLE REAL SEQUENCES [J].
TORAN, J .
RAIRO-INFORMATIQUE THEORIQUE ET APPLICATIONS-THEORETICAL INFORMATICS AND APPLICATIONS, 1987, 21 (02) :175-180
[46]   On the extension of computable real functions [J].
Hoyrup, Mathieu ;
Gomaa, Walid .
2017 32ND ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS), 2017,
[47]   On Classifying Subsets of Natural Numbers by Their Computable Permutations [J].
E. F. Combarro .
Siberian Mathematical Journal, 2004, 45 :125-135
[48]   A NOTE ON COMPUTABLE REAL FIELDS [J].
MADISON, EW .
JOURNAL OF SYMBOLIC LOGIC, 1970, 35 (02) :239-&
[49]   COMPUTABLE REAL FUNCTION RESULTS [J].
HAUCK, J .
ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1976, 22 (03) :265-282
[50]   On classifying subsets of natural numbers by their computable permutations [J].
Combarro, EF .
SIBERIAN MATHEMATICAL JOURNAL, 2004, 45 (01) :125-135