Weakly computable real numbers

被引:53
|
作者
Ambos-Spies, K
Weihrauch, K
Zheng, XZ [1 ]
机构
[1] BTU Cottbus, Fak 1, D-03013 Cottbus, Germany
[2] Fern Univ Hagen, D-58084 Hagen, Germany
[3] Univ Heidelberg, Inst Math, D-69120 Heidelberg, Germany
关键词
D O I
10.1006/jcom.2000.0561
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A real number x is recursively approximable if it is a limit of a computable sequence of rational numbers. If, moreover. the sequence is increasing (decreasing or simply monotonic), then x is called left computable (right computable or semi computable). x is called weakly computable if it is a difference of two left computable real numbers. We show that a real number is weakly computable if and only if there isa computable sequence (x(s))(s is an element ofN) of rational numbers which converges to x weakly effectively, namely the sum of jumps of the sequence is bounded. It is also shown that the class of weakly computable real numbers extends properly the class of semi-computable real numbers and the class of recursively approximable real numbers extends properly the class of weakly computable real numbers. (C) 2000 Academic Press.
引用
收藏
页码:676 / 690
页数:15
相关论文
共 50 条
  • [1] Weakly computable real numbers and total computable real functions
    Rettinger, R
    Zheng, XZ
    Gengler, R
    von Braunmühl, B
    COMPUTING AND COMBINATORICS, 2001, 2108 : 586 - 595
  • [2] On the Turing degrees of weakly computable real numbers
    Zheng, XZ
    JOURNAL OF LOGIC AND COMPUTATION, 2003, 13 (02) : 159 - 172
  • [3] Nearly computable real numbers
    Hertling, Peter
    Janicki, Philip
    COMPUTABILITY-THE JOURNAL OF THE ASSOCIATION CIE, 2024, 13 (01): : 57 - 88
  • [4] Monotonically computable real numbers
    Rettinger, R
    Zheng, XZ
    Gengler, R
    von Braunmühl, B
    MATHEMATICAL LOGIC QUARTERLY, 2002, 48 (03) : 459 - 479
  • [5] Monotonically computable real numbers
    Rettinger, R
    Zheng, XZ
    Gengler, R
    von Braunmühl, B
    COMBINATORICS, COMPUTABILITY AND LOGIC, 2001, : 187 - 201
  • [6] A Banach-Mazur computable but not Markov computable function on the computable real numbers
    Hertling, P
    AUTOMATA, LANGUAGES AND PROGRAMMING, 2002, 2380 : 962 - 972
  • [7] A Banach-Mazur computable but not Markov computable function on the computable real numbers
    Hertling, P
    ANNALS OF PURE AND APPLIED LOGIC, 2005, 132 (2-3) : 227 - 246
  • [8] SPECTRUM OF THE FIELD OF COMPUTABLE REAL NUMBERS
    Korovina, M. V.
    Kudinov, O. V.
    ALGEBRA AND LOGIC, 2017, 55 (06) : 485 - 500
  • [9] Divergence bounded computable real numbers
    Zheng, XZ
    Lu, DC
    Bao, KJ
    THEORETICAL COMPUTER SCIENCE, 2006, 351 (01) : 27 - 38
  • [10] Hierarchy of monotonically computable real numbers
    Rettinger, R
    Zheng, XZ
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2001, 2001, 2136 : 633 - 644