An Evolutionary Radial Basis Function Neural Network with Robust Genetic-Based Immunecomputing for Online Tracking Control of Autonomous Robots

被引:13
作者
Huang, Hsu-Chih [1 ]
Chiang, Chih-Hao [1 ]
机构
[1] Natl Ilan Univ, Dept Elect Engn, Yilan, Taiwan
关键词
AIS; Mobile robot; RBFNN; Tracking control; GA; ALGORITHM; OPTIMIZATION; DESIGN;
D O I
10.1007/s11063-015-9452-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents an evolutionary radial basis function neural network with genetic algorithm and artificial immune system (GAAIS-RBFNN) for tracking control of autonomous robots. Both the GAAIS-RBFNN computational intelligence and online tracking controller are implemented in one field-programmable gate array (FPGA) chip to cope with the optimal control problem of real-world mobile robotics. The hybrid GAAIS paradigm incorporated with Taguchi quality method is employed to determine the optimal structure of RBFNN. The control parameters of tracking controller are online tuned by minimizing the performance index using the proposed GAAIS-RBFNN to achieve trajectory tracking. Experimental results and comparative works are conducted to show the effectiveness and merit of the proposed FPGA-based GAAIS-RBFNN tracking controller using system-on-a-programmable-chip technology. This FPGA-based online hybrid GAAIS-RBFNN intelligent controller outperforms the existing bio-inspired RBFNN controllers using individual GA and AIS algorithms.
引用
收藏
页码:19 / 35
页数:17
相关论文
共 32 条
[1]   Logistic Regression by Means of Evolutionary Radial Basis Function Neural Networks [J].
Antonio Gutierrez, Pedro ;
Hervas-Martinez, Cesar ;
Martinez-Estudillo, Francisco J. .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2011, 22 (02) :246-263
[2]   PSO-based real-time control of planar uniform circular arrays [J].
Benedetti, Manuel ;
Azaro, Renzo ;
Franceschini, Davide ;
Massa, Andrea .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2006, 5 :545-548
[3]  
Broomhead D. S., 1988, Complex Systems, V2, P321
[4]   GA-based neural network for energy recovery system of the electric motorcycle [J].
Cheng, Chin-Hsing ;
Ye, Jian-Xun .
EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (04) :3034-3039
[5]  
Cruz I.L.L., 2003, Applied Soft Computing, V3, P97
[6]  
de Castro LN, 2003, SOFT COMPUT, V7, P526, DOI [10.1007/S00500-002-0237-z, 10.1007/S00500-002-0237-Z]
[7]   Output value-based initialization for radial basis function neural networks [J].
Guillen, Alberto ;
Rojas, Ignacio ;
Gonzalez, Jesus ;
Pomares, Hector ;
Herrera, L. J. ;
Valenzuela, O. ;
Rojas, F. .
NEURAL PROCESSING LETTERS, 2007, 25 (03) :209-225
[8]   Combining genetic optimisation with hybrid learning algorithm for radial basis function neural networks [J].
Guo, L ;
Huang, DS ;
Zhao, WB .
ELECTRONICS LETTERS, 2003, 39 (22) :1600-1601
[9]   Real-Time Model Predictive Control Using a Self-Organizing Neural Network [J].
Han, Hong-Gui ;
Wu, Xiao-Long ;
Qiao, Jun-Fei .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2013, 24 (09) :1425-1436
[10]   Design Optimization of PID Controller in Automatic Voltage Regulator System Using Taguchi Combined Genetic Algorithm Method [J].
Hasanien, Hany M. .
IEEE SYSTEMS JOURNAL, 2013, 7 (04) :825-831