Genetic Nelder-Mead neural network algorithm for fault parameter inversion using GPS data

被引:3
作者
Wang, Leyang [1 ,3 ]
Xu, Ranran [1 ,2 ]
Yu, Fengbin [4 ]
机构
[1] East China Univ Technol, Fac Geomat, Nanchang 330013, Jiangxi, Peoples R China
[2] Jiangsu Coll Safety Technol, Fac Ind Safety & Occupat Hlth, Xuzhou 221000, Jiangsu, Peoples R China
[3] Minist Nat Resources, Key Lab Mine Environm Monitoring & Improving Poya, Nanchang 330013, Jiangxi, Peoples R China
[4] BGI Engn Consultants Ltd, Beijing 100038, Peoples R China
基金
中国国家自然科学基金;
关键词
Fault parameter inversion; Genetic algorithm; Nelder-Mead simplex algorithm; Neural network algorithm; TENSILE FAULTS; OPTIMIZATION; DEFORMATION; EARTHQUAKE; SHEAR;
D O I
10.1016/j.geog.2021.12.005
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The traditional genetic algorithm (GA) has unstable inversion results and is easy to fall into the local optimum when inverting fault parameters. Therefore, this article considers the combination of GA with other non-linear algorithms in order to improve the inversion precision of GA. This paper proposes a genetic Nelder-Mead neural network algorithm (GNMNNA). This algorithm uses a neural network algorithm (NNA) to optimize the global search ability of GA. At the same time, the simplex algorithm is used to optimize the local search capability of the GA. Through numerical examples, the stability of the inversion algorithm under different strategies is explored. The experimental results show that the proposed GNMNNA has stronger inversion stability and higher precision compared with the existing algorithms. The effectiveness of GNMNNA is verified by the Bodrum-Kos earthquake and Monte Cristo Range earthquake. The experimental results show that GNMNNA is superior to GA and NNA in both inversion precision and computational stability. Therefore, GNMNNA has greater application potential in complex earthquake environment. (C) 2022 Editorial office of Geodesy and Geodynamics. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.
引用
收藏
页码:386 / 398
页数:13
相关论文
共 43 条
[1]   THE 1989 LOMA-PRIETA EARTHQUAKE IMAGED FROM INVERSION OF GEODETIC DATA [J].
ARNADOTTIR, T ;
SEGALL, P .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1994, 99 (B11) :21835-21855
[2]   Simulated annealing inversion of multimode Rayleigh wave dispersion curves for geological structure [J].
Beaty, KS ;
Schmitt, DR ;
Sacchi, M .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2002, 151 (02) :622-631
[3]   Deformation during the 12 November 1999 Duzce, Turkey, earthquake, from GPS and InSAR data [J].
Bürgmann, R ;
Ayhan, ME ;
Fielding, EJ ;
Wright, TJ ;
McClusky, S ;
Aktug, B ;
Demir, C ;
Lenk, O ;
Türkezer, A .
BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2002, 92 (01) :161-171
[4]   Artificial neural networks for parameter estimation in geophysics [J].
Calderón-Macías, C ;
Sen, MK ;
Stoffa, PL .
GEOPHYSICAL PROSPECTING, 2000, 48 (01) :21-47
[5]  
[冯万鹏 Feng Wanpeng], 2010, [地球物理学进展, Progress in Geophysiscs], V25, P1189
[6]  
Gobashy M., 2021, Self-Potential Method: Theoretical Modeling and Applications in Geosciences, P35
[7]  
Holland J. H., 1992, ADAPTATION NATURAL A, DOI 10.7551/mitpress/1090.001.0001
[8]   Multiobjective particle swarm inversion algorithm for two-dimensional magnetic data [J].
Jie, Xiong ;
Tao, Zhang .
APPLIED GEOPHYSICS, 2015, 12 (02) :127-136
[9]   A Hybri of genetic algorithm and particle swarm optimization for recurrent network design [J].
Juang, CF .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2004, 34 (02) :997-1006
[10]   FAST SEISMIC RAY TRACING [J].
KELLER, HB ;
PEROZZI, DJ .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1983, 43 (04) :981-992