Genetic Nelder-Mead neural network algorithm for fault parameter inversion using GPS data

被引:2
|
作者
Wang, Leyang [1 ,3 ]
Xu, Ranran [1 ,2 ]
Yu, Fengbin [4 ]
机构
[1] East China Univ Technol, Fac Geomat, Nanchang 330013, Jiangxi, Peoples R China
[2] Jiangsu Coll Safety Technol, Fac Ind Safety & Occupat Hlth, Xuzhou 221000, Jiangsu, Peoples R China
[3] Minist Nat Resources, Key Lab Mine Environm Monitoring & Improving Poya, Nanchang 330013, Jiangxi, Peoples R China
[4] BGI Engn Consultants Ltd, Beijing 100038, Peoples R China
基金
中国国家自然科学基金;
关键词
Fault parameter inversion; Genetic algorithm; Nelder-Mead simplex algorithm; Neural network algorithm; TENSILE FAULTS; OPTIMIZATION; DEFORMATION; EARTHQUAKE; SHEAR;
D O I
10.1016/j.geog.2021.12.005
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The traditional genetic algorithm (GA) has unstable inversion results and is easy to fall into the local optimum when inverting fault parameters. Therefore, this article considers the combination of GA with other non-linear algorithms in order to improve the inversion precision of GA. This paper proposes a genetic Nelder-Mead neural network algorithm (GNMNNA). This algorithm uses a neural network algorithm (NNA) to optimize the global search ability of GA. At the same time, the simplex algorithm is used to optimize the local search capability of the GA. Through numerical examples, the stability of the inversion algorithm under different strategies is explored. The experimental results show that the proposed GNMNNA has stronger inversion stability and higher precision compared with the existing algorithms. The effectiveness of GNMNNA is verified by the Bodrum-Kos earthquake and Monte Cristo Range earthquake. The experimental results show that GNMNNA is superior to GA and NNA in both inversion precision and computational stability. Therefore, GNMNNA has greater application potential in complex earthquake environment. (C) 2022 Editorial office of Geodesy and Geodynamics. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.
引用
收藏
页码:386 / 398
页数:13
相关论文
共 50 条
  • [1] Multistart Nelder-Mead Neural Network Algorithm for Earthquake Source Parameter Inversion of 2017 Bodrum-Kos Earthquake
    Wang, Leyang
    Xu, Ranran
    JOURNAL OF SURVEYING ENGINEERING, 2021, 147 (03)
  • [2] Parameter Estimation of Nonlinear Muskingum Models Using Nelder-Mead Simplex Algorithm
    Barati, Reza
    JOURNAL OF HYDROLOGIC ENGINEERING, 2011, 16 (11) : 946 - 954
  • [3] Geometric Nelder-Mead Algorithm on the Space of Genetic Programs
    Moraglio, Alberto
    Silva, Sara
    GECCO-2011: PROCEEDINGS OF THE 13TH ANNUAL GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2011, : 1307 - 1314
  • [4] Minimizing molecular potential energy function using genetic Nelder-Mead algorithm
    Ali, Ahmed Fouad
    Hassanien, Aboul Ella
    2013 8TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING & SYSTEMS (ICCES), 2013, : 177 - 183
  • [5] PARAMETER ESTIMATION FOR A MECHANISTIC MODEL OF HIGH DOSE IRRADIATION DAMAGE USING NELDER-MEAD SIMPLEX METHOD AND GENETIC ALGORITHM
    Siam, Fuaada Mohd
    Kamal, Mohamad Hidayad Ahmad
    Johar, Farhana
    JURNAL TEKNOLOGI, 2016, 78 (12-2): : 87 - 92
  • [6] Optimal Design of Viscous Damper Connectors for Adjacent Structures using Genetic Algorithm and Nelder-Mead Algorithm
    Bigdeli, Kasra
    Hare, Warren
    Tesfamariam, Solomon
    ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS 2012, 2012, 8341
  • [7] A genetic algorithm and a particle swarm optimizer hybridized with Nelder-Mead simplex search
    Fan, Shu-kai S.
    Liang, Yun-Chia
    Zahara, Erwie
    COMPUTERS & INDUSTRIAL ENGINEERING, 2006, 50 (04) : 401 - 425
  • [8] Enhanced Antibiotic Production by Streptomyces sindenensis Using Artificial Neural Networks Coupled with Genetic Algorithm and Nelder-Mead Downhill Simplex
    Tripathi, C. K. M.
    Khan, Mahvish
    Praveen, Vandana
    Khan, Saif
    Srivastava, Akanksha
    JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, 2012, 22 (07) : 939 - 946
  • [9] Application of the genetic algorithm and downhill simplex methods (Nelder-Mead methods) in the search for the optimum chiller configuration
    Maehara, Noriyasu
    Shimoda, Yoshiyuki
    APPLIED THERMAL ENGINEERING, 2013, 61 (02) : 433 - 442
  • [10] Parameter identification of chaotic systems by hybrid Nelder-Mead simplex search and differential evolution algorithm
    Wang, Ling
    Xu, Ye
    Li, Lingpo
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (04) : 3238 - 3245