Thermodynamics' third law and quantum phase transitions

被引:1
作者
Kruse, M. K. G. [1 ]
Miller, H. G. [1 ]
Plastino, A. [2 ]
Plastino, A. R. [1 ,3 ,4 ]
机构
[1] Univ Pretoria, Dept Phys, ZA-0002 Pretoria, South Africa
[2] Natl Univ La Plata, IFLP CCT Conicet, RA-1900 La Plata, Argentina
[3] Univ Granada, Inst Carlos Fis Teor & Computac, Granada, Spain
[4] CREG UNLP Conicet, La Plata, Buenos Aires, Argentina
关键词
Quantum phase transition; STATISTICAL MECHANICS; APPROXIMATION METHODS; FINITE-TEMPERATURE; INFORMATION THEORY; SOLVABLE MODEL; NUCLEAR-MATTER; VALIDITY; SYSTEMS;
D O I
10.1016/j.physa.2010.03.013
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report on the fact that microscopically enforcing fulfillment of thermodynamics' third law on a system of fermions automatically yields the values of the external parameter (here coupling strengths in the pertinent Hamiltonian) at which quantum phase transitions take place. Our considerations are illustrated via an exactly solvable model of Plastino and Moszkowski [II Nuovo Cimento 47,470 (1978)]. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2533 / 2540
页数:8
相关论文
共 50 条
[31]   Peculiar Quantum Phase Transitions and Hidden Supersymmetry in a Lipkin-Meshkov-Glick Model [J].
Chen Gang ;
Liang Jiu-Qing .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2009, 51 (05) :881-884
[32]   Crystallography, thermodynamics and phase transitions in refractory binary alloys [J].
Natarajan, Anirudh Raju ;
Dolin, Pavel ;
Van der Ven, Anton .
ACTA MATERIALIA, 2020, 200 :171-186
[33]   Emergence of a Second Law of Thermodynamics in Isolated Quantum Systems [J].
Meier, Florian ;
Rivlin, Tom ;
Debarba, Tiago ;
Xuereb, Jake ;
Huber, Marcus ;
Lock, Maximilian P. E. .
PRX QUANTUM, 2025, 6 (01)
[34]   Quantum coherence as indicators of quantum phase transitions, factorization and thermal phase transitions in the anisotropic XY model [J].
Yong-Jia He ;
Jing Zhou ;
Su-Peng Li ;
Zheng-Hang Sun .
Quantum Information Processing, 2018, 17
[35]   Benford's law gives better scaling exponents in phase transitions of quantum XY models [J].
Rane, Ameya Deepak ;
Mishra, Utkarsh ;
Biswas, Anindya ;
Sen , Aditi ;
Sen, Ujjwal .
PHYSICAL REVIEW E, 2014, 90 (02)
[36]   Quantum spin fluctuations in dynamical quantum phase transitions [J].
Wong, Cheuk Yiu ;
Cheraghi, Hadi ;
Yu, Wing Chi .
PHYSICAL REVIEW B, 2023, 108 (06)
[37]   QUANTUM PHASE TRANSITIONS AND NUCLEAR STRUCTURE [J].
Cejnar, P. ;
Stransky, P. ;
Macek, M. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS, 2009, 18 (04) :965-974
[38]   Excited-state quantum phase transitions and periodic dynamics [J].
Engelhardt, G. ;
Bastidas, V. M. ;
Kopylov, W. ;
Brandes, T. .
PHYSICAL REVIEW A, 2015, 91 (01)
[39]   Controlling dynamical quantum phase transitions [J].
Kennes, D. M. ;
Schuricht, D. ;
Karrasch, C. .
PHYSICAL REVIEW B, 2018, 97 (18)
[40]   A Brief Introduction to Quantum Phase Transitions [J].
Sengupta, K. .
APPLIED MATHEMATICS, 2015, 146 :55-68