White-Light Emission from Unmodified Graphene Oxide Quantum Dots

被引:71
作者
Ghosh, Tufan [1 ]
Prasad, Edamana [1 ]
机构
[1] Indian Inst Technol, Dept Chem, Madras 600036, Tamil Nadu, India
关键词
HYDROTHERMAL ROUTE; FLUORESCENCE; SINGLE; PHOTOLUMINESCENCE; FABRICATION;
D O I
10.1021/jp511787a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report herein the synthesis and characterization of unmodified graphene oxide quantum dots (GOQDs) with white-light-emitting properties, upon photoexcitation at 340 nm. The Commission International de lEclairage (CIE) 1931 chromaticity coordinates for GOQDs (x = 0.29, y = 0.34) suggest that highly pure white-light emission was achieved. A detailed mechanistic study was carried out utilizing UV-visible absorption, steady-state and time-resolved fluorescence spectroscopy, and dynamic light scattering (DLS) techniques to understand the origin of the white-light emission. The results taken together suggest that GOQDs could self-assemble in solution and thus transform the luminescence behavior. Furthermore, the results indicate that the pH of the medium also plays a crucial role in assisting the aggregation to generate the white-light emission. The concentration-dependent DLS measurements support a cooperative mechanism for the aggregation kinetics in the system. More importantly, the study suggests that white-light emission can be generated from unmodified graphene oxide quantum dots by tuning their nanoscopic aggregation properties.
引用
收藏
页码:2733 / 2742
页数:10
相关论文
共 43 条
[1]   Detection of the ovarian cancer biomarker CA-125 using chemiluminescence resonance energy transfer to graphene quantum dots [J].
Al-Ogaidi, Israa ;
Gou, Honglei ;
Aguilar, Zoraida P. ;
Guo, Shouwu ;
Melconian, Alice K. ;
Al-Kazaz, Abdul Kareem A. ;
Meng, Fanke ;
Wu, Nianqiang .
CHEMICAL COMMUNICATIONS, 2014, 50 (11) :1344-1346
[2]   Graphene Quantum Dots [J].
Bacon, Mitchell ;
Bradley, Siobhan J. ;
Nann, Thomas .
PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 2014, 31 (04) :415-428
[3]   Unusual emission transformation of graphene quantum dots induced by self-assembled aggregation [J].
Chen, Shuai ;
Liu, Jia-Wei ;
Chen, Mei-Ling ;
Chen, Xu-Wei ;
Wang, Jian-Hua .
CHEMICAL COMMUNICATIONS, 2012, 48 (61) :7637-7639
[4]   Self-assembled π-stacks of functional dyes in solution: structural and thermodynamic features [J].
Chen, Zhijian ;
Lohr, Andreas ;
Saha-Moeller, Chantu R. ;
Wuerthner, Frank .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (02) :564-584
[5]   Origin of Strong Excitation Wavelength Dependent Fluorescence of Graphene Oxide [J].
Cushing, Scott K. ;
Li, Ming ;
Huang, Fuqiang ;
Wu, Nianqiang .
ACS NANO, 2014, 8 (01) :1002-1013
[6]  
D'Andrade BW, 2002, ADV MATER, V14, P1032, DOI 10.1002/1521-4095(20020805)14:15<1032::AID-ADMA1032>3.0.CO
[7]  
2-6
[8]   Graphene Quantum Dot as a Green and Facile Sensor for Free Chlorine in Drinking Water [J].
Dong, Yongqiang ;
Li, Geli ;
Zhou, Nana ;
Wang, Ruixue ;
Chi, Yuwu ;
Chen, Guonan .
ANALYTICAL CHEMISTRY, 2012, 84 (19) :8378-8382
[9]   One-step and high yield simultaneous preparation of single- and multi-layer graphene quantum dots from CX-72 carbon black [J].
Dong, Yongqiang ;
Chen, Congqiang ;
Zheng, Xinting ;
Gao, Lili ;
Cui, Zhiming ;
Yang, Hongbin ;
Guo, Chunxian ;
Chi, Yuwu ;
Li, Chang Ming .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (18) :8764-8766
[10]   Drastic Change in Photoluminescence Properties of Graphene Quantum Dots by Chromatographic Separation [J].
Fuyuno, Naoto ;
Kozawa, Daichi ;
Miyauchi, Yuhei ;
Mouri, Shinichiro ;
Kitaura, Ryo ;
Shinohara, Hisanori ;
Yasuda, Toku ;
Komatsu, Naoki ;
Matsuda, Kazunari .
ADVANCED OPTICAL MATERIALS, 2014, 2 (10) :983-989