2D Transition-Metal-Dichalcogenide-Nanosheet-Based Composites for Photocatalytic and Electrocatalytic Hydrogen Evolution Reactions

被引:1261
作者
Lu, Qipeng [1 ]
Yu, Yifu [1 ]
Ma, Qinglang [1 ,2 ]
Chen, Bo [1 ,2 ]
Zhang, Hua [1 ]
机构
[1] Nanyang Technol Univ, Ctr Programmable Mat, Sch Mat Sci & Engn, 50 Nanyang Ave, Singapore 639798, Singapore
[2] Nanyang Technol Univ, Interdisciplinary Grad Sch, Nanyang Environm & Water Res Inst, 50 Nanyang Ave, Singapore 639798, Singapore
基金
新加坡国家研究基金会;
关键词
ACTIVE EDGE SITES; REDUCED GRAPHENE OXIDE; MOLYBDENUM SULFIDE NANOPARTICLES; MOS2 ULTRATHIN NANOSHEETS; VISIBLE-LIGHT IRRADIATION; H-2; EVOLUTION; LAYER MOS2; HYBRID NANOSTRUCTURES; EFFICIENT PHOTOCATALYST; COLLOIDAL SYNTHESIS;
D O I
10.1002/adma.201503270
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hydrogen (H-2) is one of the most important clean and renewable energy sources for future energy sustainability. Nowadays, photocatalytic and electrocatalytic hydrogen evolution reactions (HERs) from water splitting are considered as two of the most efficient methods to convert sustainable energy to the clean energy carrier, H-2. Catalysts based on transition metal dichalcogenides (TMDs) are recognized as greatly promising substitutes for noble-metal-based catalysts for HER. The photocatalytic and electrocatalytic activities of TMD nanosheets for the HER can be further improved after hybridization with many kinds of nanomaterials, such as metals, oxides, sulfides, and carbon materials, through different methods including the in situ reduction method, the hot-injection method, the heating-up method, the hydro(solvo) thermal method, chemical vapor deposition (CVD), and thermal annealing. Here, recent progress in photocatalytic and electrocatalytic HERs using 2D TMD-based composites as catalysts is discussed.
引用
收藏
页码:1917 / 1933
页数:17
相关论文
共 189 条
[2]   Hydrogen from photo-catalytic water splitting process: A review [J].
Ahmad, H. ;
Kamarudin, S. K. ;
Minggu, L. J. ;
Kassim, M. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2015, 43 :599-610
[3]  
[Anonymous], 2013, Renewable and efficient electric power systems
[4]   The future of hydrogen - opportunities and challenges [J].
Ball, Michael ;
Wietschel, Martin .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (02) :615-627
[5]   Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials [J].
Benck, Jesse D. ;
Hellstern, Thomas R. ;
Kibsgaard, Jakob ;
Chakthranont, Pongkarn ;
Jaramillo, Thomas F. .
ACS CATALYSIS, 2014, 4 (11) :3957-3971
[6]   Nanocomposite of MoS2 on ordered mesoporous carbon nanospheres: A highly active catalyst for electrochemical hydrogen evolution [J].
Bian, Xiaojun ;
Zhu, Jie ;
Liao, Lei ;
Scanlon, Micheal D. ;
Ge, Peiyu ;
Ji, Chang ;
Girault, Hubert H. ;
Liu, Baohong .
ELECTROCHEMISTRY COMMUNICATIONS, 2012, 22 :128-132
[7]   Metal-catalysed steam reforming of ethanol in the production of hydrogen for fuel cell applications [J].
Breen, JP ;
Burch, R ;
Coleman, HM .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2002, 39 (01) :65-74
[8]   Chemistry and properties of nanocrystals of different shapes [J].
Burda, C ;
Chen, XB ;
Narayanan, R ;
El-Sayed, MA .
CHEMICAL REVIEWS, 2005, 105 (04) :1025-1102
[9]   Easy incorporation of single-walled carbon nanotubes into two-dimensional MoS2 for high-performance hydrogen evolution [J].
Cai, Yu ;
Yang, Xi ;
Liang, Tao ;
Dai, Lu ;
Ma, Lin ;
Huang, Guowei ;
Chen, Weixiang ;
Chen, Hongzheng ;
Su, Huanxing ;
Xu, Mingsheng .
NANOTECHNOLOGY, 2014, 25 (46)
[10]   Drastic Layer-Number-Dependent Activity Enhancement in Photocatalytic H2 Evolution over nMoS2/CdS (n 1) Under Visible Light [J].
Chang, Kun ;
Li, Mu ;
Wang, Tao ;
Ouyang, Shuxin ;
Li, Peng ;
Liu, Lequan ;
Ye, Jinhua .
ADVANCED ENERGY MATERIALS, 2015, 5 (10)