Existence of periodic weak solutions to the three-dimensional nonlinear viscoelastic system

被引:0
作者
Chen, Aihua [1 ,2 ]
机构
[1] Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
关键词
Nonlinear viscoelastic system; Single-integral law; Time-periodic solution; Viscoelastic solid model; Viscoelastic liquid model; CONCENTRATED POLYMER SYSTEMS; DYNAMICS; EQUATION; MEMORY;
D O I
10.1016/j.jmaa.2011.02.085
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss the time-periodic solutions to a general three-dimensional nonlinear viscoelastic system with Dirichlet boundary condition. Employing the singularity of the integral kernel, we obtain the energy estimates in Sobolev spaces with fractional index and then show the existence of time-periodic solutions to the problem for viscoelastic solid and liquid models, respectively. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:137 / 149
页数:13
相关论文
共 16 条
[1]  
[Anonymous], 1981, CONTRIBUTIONS ANAL G
[2]  
[Anonymous], 1976, GRUNDLEHREN MATH WIS
[3]   EXISTENCE OF GLOBAL WEAK SOLUTIONS TO THE DYNAMIC PROBLEM FOR A 3-DIMENSIONAL ELASTIC BODY WITH SINGULAR MEMORY [J].
BELLOUT, H ;
BLOOM, F ;
NECAS, J .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1993, 24 (01) :36-45
[4]  
DOI M, 1979, J CHEM SOC FARAD T 2, V75, P38, DOI 10.1039/f29797500038
[5]  
DOI M, 1978, J CHEM SOC FARAD T 2, V74, P1802, DOI 10.1039/f29787401802
[6]  
DOI M, 1978, J CHEM SOC FARAD T 2, V74, P1818, DOI 10.1039/f29787401818
[7]  
ENGLER H, 1990, ARCH RATION MECH AN, V113, P1
[8]  
FEIREISL E, 1991, J INTEGRAL EQUAT, V3, P321
[9]   ON THE THERMODYNAMICS OF VISCOELASTIC MATERIALS OF SINGLE-INTEGRAL TYPE [J].
GURTIN, ME ;
HRUSA, WJ .
QUARTERLY OF APPLIED MATHEMATICS, 1991, 49 (01) :67-85
[10]  
LI DQ, 2000, PHYS PARTIAL DIFFERE, V1