Texture Analysis An Emerging Clinical Tool for Pancreatic Lesions

被引:17
作者
Awe, Adam M. [1 ,2 ]
Rendell, Victoria R. [1 ]
Lubner, Meghan G. [2 ]
Winslow, Emily R. [3 ]
机构
[1] Univ Wisconsin, Sch Med & Publ Hlth, Dept Surg, Madison, WI USA
[2] Univ Wisconsin, Dept Radiol, Sch Med & Publ Hlth, Madison, WI 53706 USA
[3] Medstar Georgetown Univ Hosp, Medstar Georgetown Transplant Inst, Washington, DC USA
基金
美国国家卫生研究院;
关键词
texture analysis; imaging; pancreas; pancreatic cysts; pancreatic ductal adenocarcinoma (PDAC); pancreatic neuroendocrine tumor (PNET); F-18-FDG PET; CT-F-18-labeled fluoro-2-deoxyglucose positron emission tomography; computed tomography; ACM - angular co-occurrence matrix; AUC - area under the curve; AWE - average-weighted eccentricity; BD-IPMN - branch duct intraductal papillary mucinous neoplasm; CA 19-9-carbohydrate antigen 19-9; CECT - contrast-enhanced computed tomography; CGITA - Chang-Gung Image Texture Analysis; CI - confidence interval; CTA - computed tomography angiography; DFS - disease-free survival; EBF - enhanced boundary fraction; EIF - enhanced inside fraction; EUS; FNA - endoscopic ultrasound; fine-needle aspiration; FLCCF - filled largest connected component fraction; GLCM - gray-level co-occurrence matrix; HU - Hounsfield Unit; IBEX - Imaging Biomarker Explorer; IPAS - intrapancreatic accessory spleens; IPMN - intraductal papillary mucinous neoplasm; MCN - mucinous cystic neoplasms; MPP - mean of positive pixels; MR - magnetic resonance; OS - overall survivability; PDAC - pancreatic ductal adenocarcinoma; PET - positron emission tomography; PNET - pancreatic neuroendocrine tumor; RiF - radiographically inspired features; ROC - receiver operating characteristic; ROI - region of interest; SCA - serous cystadenoma; SSF - spatial scaling factor; SUV - standard uptake volume; EUS-GUIDED FNA; TUMOR HETEROGENEITY; CANCER; ADENOCARCINOMA; SURVIVAL; PREDICTION; FEATURES; GRADE; CLASSIFICATION; ASSOCIATION;
D O I
10.1097/MPA.0000000000001495
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Radiologic characterization of pancreatic lesions is currently limited. Computed tomography is insensitive in detecting and characterizing small pancreatic lesions. Moreover, heterogeneity of many pancreatic lesions makes determination of malignancy challenging. As a result, invasive diagnostic testing is frequently used to characterize pancreatic lesions but often yields indeterminate results. Computed tomography texture analysis (CTTA) is an emerging noninvasive computational tool that quantifies gray-scale pixels/voxels and their spatial relationships within a region of interest. In nonpancreatic lesions, CTTA has shown promise in diagnosis, lesion characterization, and risk stratification, and more recently, pancreatic applications of CTTA have been explored. This review outlines the emerging role of CTTA in identifying, characterizing, and risk stratifying pancreatic lesions. Although recent studies show the clinical potential of CTTA of the pancreas, a clear understanding of which specific texture features correlate with high-grade dysplasia and predict survival has not yet been achieved. Further multidisciplinary investigations using strong radiologic-pathologic correlation are needed to establish a role for this noninvasive diagnostic tool.
引用
收藏
页码:301 / 312
页数:12
相关论文
共 41 条
  • [1] Role of magnetic resonance imaging in the detection and characterization of solid pancreatic nodules: An update
    Al Ansari, Najwa
    Ramalho, Miguel
    Semelka, Richard C.
    Buonocore, Valeria
    Gigli, Silvia
    Maccioni, Francesca
    [J]. WORLD JOURNAL OF RADIOLOGY, 2015, 7 (11): : 361 - 374
  • [2] Preoperative risk prediction for intraductal papillary mucinous neoplasms by quantitative CT image analysis
    Attiyeh, Marc A.
    Chakraborty, Jayasree
    Gazit, Lior
    Langdon-Embry, Liana
    Gonen, Mithat
    Balachandran, Vinod P.
    D'Angelica, Michael I.
    DeMatteo, Ronald P.
    Jarnagin, William R.
    Kingham, T. Peter
    Allen, Peter J.
    Do, Richard K.
    Simpson, Amber L.
    [J]. HPB, 2019, 21 (02) : 212 - 218
  • [3] Survival Prediction in Pancreatic Ductal Adenocarcinoma by Quantitative Computed Tomography Image Analysis
    Attiyeh, Marc A.
    Chakraborty, Jayasree
    Doussot, Alexandre
    Langdon-Embry, Liana
    Mainarich, Shiana
    Gonen, Mithat
    Balachandran, Vinod P.
    D'Angelica, Michael I.
    DeMatteo, Ronald P.
    Jarnagin, William R.
    Kingham, T. Peter
    Allen, Peter J.
    Simpson, Amber L.
    Do, Richard K.
    [J]. ANNALS OF SURGICAL ONCOLOGY, 2018, 25 (04) : 1034 - 1042
  • [4] Pathologic stratification of operable lung adenocarcinoma using radiomics features extracted from dual energy ct images
    Bae, Jung Min
    Jeong, Ji Yun
    Lee, Ho Yun
    Sohn, Insuk
    Kim, Hye Seung
    Son, Ji Ye
    Kwon, O. Jung
    Choi, Joon Young
    Lee, Kyung Soo
    Shim, Young Mog
    [J]. ONCOTARGET, 2017, 8 (01) : 523 - 535
  • [5] Genomic analyses identify molecular subtypes of pancreatic cancer
    Bailey, Peter
    Chang, David K.
    Nones, Katia
    Johns, Amber L.
    Patch, Ann-Marie
    Gingras, Marie-Claude
    Miller, David K.
    Christ, Angelika N.
    Bruxner, Tim J. C.
    Quinn, Michael C.
    Nourse, Craig
    Murtaugh, L. Charles
    Harliwong, Ivon
    Idrisoglu, Senel
    Manning, Suzanne
    Nourbakhsh, Ehsan
    Wani, Shivangi
    Fink, Lynn
    Holmes, Oliver
    Chin, Vencssa
    Anderson, Matthew J.
    Kazakoff, Stephen
    Leonard, Conrad
    Newell, Felicity
    Waddell, Nick
    Wood, Scott
    Xu, Qinying
    Wilson, Peter J.
    Cloonan, Nicole
    Kassahn, Karin S.
    Taylor, Darrin
    Quek, Kelly
    Robertson, Alan
    Pantano, Lorena
    Mincarelli, Laura
    Sanchez, Luis N.
    Evers, Lisa
    Wu, Jianmin
    Pinese, Mark
    Cowley, Mark J.
    Jones, Marc D.
    Colvin, Emily K.
    Nagrial, Adnan M.
    Humphrey, Emily S.
    Chantrill, Lorraine A.
    Mawson, Amanda
    Humphris, Jeremy
    Chou, Angela
    Pajic, Marina
    Scarlett, Christopher J.
    [J]. NATURE, 2016, 531 (7592) : 47 - +
  • [6] Prediction of Pancreatic Neuroendocrine Tumor Grade Based on CT Features and Texture Analysis
    Canellas, Rodrigo
    Burk, Kristine S.
    Parakh, Anushri
    Sahani, Dushyant V.
    [J]. AMERICAN JOURNAL OF ROENTGENOLOGY, 2018, 210 (02) : 341 - 346
  • [7] Contrast enhancement pattern on multidetector CT predicts malignancy in pancreatic endocrine tumours
    Cappelli, Carla
    Boggi, Ugo
    Mazzeo, Salvatore
    Cervelli, Rosa
    Campani, Daniela
    Funel, Niccola
    Contillo, Benedetta Pontillo
    Bartolozzi, Carlo
    [J]. EUROPEAN RADIOLOGY, 2015, 25 (03) : 751 - 759
  • [8] Resectable pancreatic adenocarcinoma: Role of CT quantitative imaging biomarkers for predicting pathology and patient outcomes
    Cassinotto, Christophe
    Chong, Jaron
    Zogopoulos, George
    Reinhold, Caroline
    Chiche, Laurence
    Lafourcade, Jean-Pierre
    Cuggia, Adeline
    Terrebonne, Eric
    Dohan, Anthony
    Gallix, Benoit
    [J]. EUROPEAN JOURNAL OF RADIOLOGY, 2017, 90 : 152 - 158
  • [9] CT radiomics to predict high-risk intraductal papillary mucinous neoplasms of the pancreas
    Chakraborty, Jayasree
    Midya, Abhishek
    Gazit, Lior
    Attiyeh, Marc
    Langdon-Embry, Liana
    Allen, Peter J.
    Do, Richard K. G.
    Simpson, Amber L.
    [J]. MEDICAL PHYSICS, 2018, 45 (11) : 5019 - 5029
  • [10] Preliminary study of tumor heterogeneity in imaging predicts two year survival in pancreatic cancer patients
    Chakraborty, Jayasree
    Langdon-Embry, Liana
    Cunanan, Kristen M.
    Escalon, Joanna G.
    Allen, Peter J.
    Lowery, Maeve A.
    O'Reilly, Eileen M.
    Gonen, Mithat
    Do, Richard G.
    Simpson, Amber L.
    [J]. PLOS ONE, 2017, 12 (12):