Texture Analysis An Emerging Clinical Tool for Pancreatic Lesions

被引:19
作者
Awe, Adam M. [1 ,2 ]
Rendell, Victoria R. [1 ]
Lubner, Meghan G. [2 ]
Winslow, Emily R. [3 ]
机构
[1] Univ Wisconsin, Sch Med & Publ Hlth, Dept Surg, Madison, WI USA
[2] Univ Wisconsin, Dept Radiol, Sch Med & Publ Hlth, Madison, WI 53706 USA
[3] Medstar Georgetown Univ Hosp, Medstar Georgetown Transplant Inst, Washington, DC USA
基金
美国国家卫生研究院;
关键词
texture analysis; imaging; pancreas; pancreatic cysts; pancreatic ductal adenocarcinoma (PDAC); pancreatic neuroendocrine tumor (PNET); F-18-FDG PET; CT-F-18-labeled fluoro-2-deoxyglucose positron emission tomography; computed tomography; ACM - angular co-occurrence matrix; AUC - area under the curve; AWE - average-weighted eccentricity; BD-IPMN - branch duct intraductal papillary mucinous neoplasm; CA 19-9-carbohydrate antigen 19-9; CECT - contrast-enhanced computed tomography; CGITA - Chang-Gung Image Texture Analysis; CI - confidence interval; CTA - computed tomography angiography; DFS - disease-free survival; EBF - enhanced boundary fraction; EIF - enhanced inside fraction; EUS; FNA - endoscopic ultrasound; fine-needle aspiration; FLCCF - filled largest connected component fraction; GLCM - gray-level co-occurrence matrix; HU - Hounsfield Unit; IBEX - Imaging Biomarker Explorer; IPAS - intrapancreatic accessory spleens; IPMN - intraductal papillary mucinous neoplasm; MCN - mucinous cystic neoplasms; MPP - mean of positive pixels; MR - magnetic resonance; OS - overall survivability; PDAC - pancreatic ductal adenocarcinoma; PET - positron emission tomography; PNET - pancreatic neuroendocrine tumor; RiF - radiographically inspired features; ROC - receiver operating characteristic; ROI - region of interest; SCA - serous cystadenoma; SSF - spatial scaling factor; SUV - standard uptake volume; EUS-GUIDED FNA; TUMOR HETEROGENEITY; CANCER; ADENOCARCINOMA; SURVIVAL; PREDICTION; FEATURES; GRADE; CLASSIFICATION; ASSOCIATION;
D O I
10.1097/MPA.0000000000001495
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Radiologic characterization of pancreatic lesions is currently limited. Computed tomography is insensitive in detecting and characterizing small pancreatic lesions. Moreover, heterogeneity of many pancreatic lesions makes determination of malignancy challenging. As a result, invasive diagnostic testing is frequently used to characterize pancreatic lesions but often yields indeterminate results. Computed tomography texture analysis (CTTA) is an emerging noninvasive computational tool that quantifies gray-scale pixels/voxels and their spatial relationships within a region of interest. In nonpancreatic lesions, CTTA has shown promise in diagnosis, lesion characterization, and risk stratification, and more recently, pancreatic applications of CTTA have been explored. This review outlines the emerging role of CTTA in identifying, characterizing, and risk stratifying pancreatic lesions. Although recent studies show the clinical potential of CTTA of the pancreas, a clear understanding of which specific texture features correlate with high-grade dysplasia and predict survival has not yet been achieved. Further multidisciplinary investigations using strong radiologic-pathologic correlation are needed to establish a role for this noninvasive diagnostic tool.
引用
收藏
页码:301 / 312
页数:12
相关论文
共 41 条
[1]   Role of magnetic resonance imaging in the detection and characterization of solid pancreatic nodules: An update [J].
Al Ansari, Najwa ;
Ramalho, Miguel ;
Semelka, Richard C. ;
Buonocore, Valeria ;
Gigli, Silvia ;
Maccioni, Francesca .
WORLD JOURNAL OF RADIOLOGY, 2015, 7 (11) :361-374
[2]   Preoperative risk prediction for intraductal papillary mucinous neoplasms by quantitative CT image analysis [J].
Attiyeh, Marc A. ;
Chakraborty, Jayasree ;
Gazit, Lior ;
Langdon-Embry, Liana ;
Gonen, Mithat ;
Balachandran, Vinod P. ;
D'Angelica, Michael I. ;
DeMatteo, Ronald P. ;
Jarnagin, William R. ;
Kingham, T. Peter ;
Allen, Peter J. ;
Do, Richard K. ;
Simpson, Amber L. .
HPB, 2019, 21 (02) :212-218
[3]   Survival Prediction in Pancreatic Ductal Adenocarcinoma by Quantitative Computed Tomography Image Analysis [J].
Attiyeh, Marc A. ;
Chakraborty, Jayasree ;
Doussot, Alexandre ;
Langdon-Embry, Liana ;
Mainarich, Shiana ;
Gonen, Mithat ;
Balachandran, Vinod P. ;
D'Angelica, Michael I. ;
DeMatteo, Ronald P. ;
Jarnagin, William R. ;
Kingham, T. Peter ;
Allen, Peter J. ;
Simpson, Amber L. ;
Do, Richard K. .
ANNALS OF SURGICAL ONCOLOGY, 2018, 25 (04) :1034-1042
[4]   Pathologic stratification of operable lung adenocarcinoma using radiomics features extracted from dual energy ct images [J].
Bae, Jung Min ;
Jeong, Ji Yun ;
Lee, Ho Yun ;
Sohn, Insuk ;
Kim, Hye Seung ;
Son, Ji Ye ;
Kwon, O. Jung ;
Choi, Joon Young ;
Lee, Kyung Soo ;
Shim, Young Mog .
ONCOTARGET, 2017, 8 (01) :523-535
[5]   Genomic analyses identify molecular subtypes of pancreatic cancer [J].
Bailey, Peter ;
Chang, David K. ;
Nones, Katia ;
Johns, Amber L. ;
Patch, Ann-Marie ;
Gingras, Marie-Claude ;
Miller, David K. ;
Christ, Angelika N. ;
Bruxner, Tim J. C. ;
Quinn, Michael C. ;
Nourse, Craig ;
Murtaugh, L. Charles ;
Harliwong, Ivon ;
Idrisoglu, Senel ;
Manning, Suzanne ;
Nourbakhsh, Ehsan ;
Wani, Shivangi ;
Fink, Lynn ;
Holmes, Oliver ;
Chin, Vencssa ;
Anderson, Matthew J. ;
Kazakoff, Stephen ;
Leonard, Conrad ;
Newell, Felicity ;
Waddell, Nick ;
Wood, Scott ;
Xu, Qinying ;
Wilson, Peter J. ;
Cloonan, Nicole ;
Kassahn, Karin S. ;
Taylor, Darrin ;
Quek, Kelly ;
Robertson, Alan ;
Pantano, Lorena ;
Mincarelli, Laura ;
Sanchez, Luis N. ;
Evers, Lisa ;
Wu, Jianmin ;
Pinese, Mark ;
Cowley, Mark J. ;
Jones, Marc D. ;
Colvin, Emily K. ;
Nagrial, Adnan M. ;
Humphrey, Emily S. ;
Chantrill, Lorraine A. ;
Mawson, Amanda ;
Humphris, Jeremy ;
Chou, Angela ;
Pajic, Marina ;
Scarlett, Christopher J. .
NATURE, 2016, 531 (7592) :47-+
[6]   Prediction of Pancreatic Neuroendocrine Tumor Grade Based on CT Features and Texture Analysis [J].
Canellas, Rodrigo ;
Burk, Kristine S. ;
Parakh, Anushri ;
Sahani, Dushyant V. .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2018, 210 (02) :341-346
[7]   Contrast enhancement pattern on multidetector CT predicts malignancy in pancreatic endocrine tumours [J].
Cappelli, Carla ;
Boggi, Ugo ;
Mazzeo, Salvatore ;
Cervelli, Rosa ;
Campani, Daniela ;
Funel, Niccola ;
Contillo, Benedetta Pontillo ;
Bartolozzi, Carlo .
EUROPEAN RADIOLOGY, 2015, 25 (03) :751-759
[8]   Resectable pancreatic adenocarcinoma: Role of CT quantitative imaging biomarkers for predicting pathology and patient outcomes [J].
Cassinotto, Christophe ;
Chong, Jaron ;
Zogopoulos, George ;
Reinhold, Caroline ;
Chiche, Laurence ;
Lafourcade, Jean-Pierre ;
Cuggia, Adeline ;
Terrebonne, Eric ;
Dohan, Anthony ;
Gallix, Benoit .
EUROPEAN JOURNAL OF RADIOLOGY, 2017, 90 :152-158
[9]   CT radiomics to predict high-risk intraductal papillary mucinous neoplasms of the pancreas [J].
Chakraborty, Jayasree ;
Midya, Abhishek ;
Gazit, Lior ;
Attiyeh, Marc ;
Langdon-Embry, Liana ;
Allen, Peter J. ;
Do, Richard K. G. ;
Simpson, Amber L. .
MEDICAL PHYSICS, 2018, 45 (11) :5019-5029
[10]   Preliminary study of tumor heterogeneity in imaging predicts two year survival in pancreatic cancer patients [J].
Chakraborty, Jayasree ;
Langdon-Embry, Liana ;
Cunanan, Kristen M. ;
Escalon, Joanna G. ;
Allen, Peter J. ;
Lowery, Maeve A. ;
O'Reilly, Eileen M. ;
Gonen, Mithat ;
Do, Richard G. ;
Simpson, Amber L. .
PLOS ONE, 2017, 12 (12)