Schmidt's subspace theorem for moving hypersurfaces in subgeneral position

被引:6
作者
Si Duc Quang [1 ,2 ]
机构
[1] Hanoi Natl Univ Educ, 136 Xuan Thuy, Hanoi, Vietnam
[2] Thang Long Inst Math & Appl Sci, Hanoi, Vietnam
关键词
Second main theorem; Diophantine approximation; Schmidt's subspace theorem; moving hypersurface; TARGETS;
D O I
10.1142/S1793042118500082
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we establish a Schmidt's subspace theorem for moving hypersurfaces in weakly subgeneral position. Our result generalizes the previous results on Schmidt's theorem for the case of moving hypersurfaces.
引用
收藏
页码:103 / 121
页数:19
相关论文
共 36 条
[31]   An effective function field version of Schmidt's subspace theorem for projective varieties, with arbitrary families of homogeneous polynomials [J].
Quang, Si Duc .
JOURNAL OF NUMBER THEORY, 2022, 241 :563-580
[32]   Cartan’s conjecture for moving hypersurfaces [J].
Qiming Yan ;
Guangsheng Yu .
Mathematische Zeitschrift, 2019, 292 :1051-1067
[33]   Cartan's conjecture for moving hypersurfaces [J].
Yan, Qiming ;
Yu, Guangsheng .
MATHEMATISCHE ZEITSCHRIFT, 2019, 292 (3-4) :1051-1067
[34]   Degeneracy second main theorem for meromorphic mappings and moving hypersurfaces with truncated counting functions and applications [J].
Si Duc Quang .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2020, 31 (06)
[35]   Second main theorem and unicity theorem for meromorphic mappings sharing moving hypersurfaces regardless of multiplicity [J].
Si Duc Quang .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (04) :399-412
[36]   A Khintchine-type version of Schmidt's theorem for planar curves [J].
Bernik, VI ;
Dickinson, H ;
Dodson, MM .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 454 (1968) :179-185