Intrinsic Structures of Certain Musielak-Orlicz Hardy Spaces

被引:4
|
作者
Cao, Jun [1 ]
Liu, Liguang [2 ]
Yang, Dachun [3 ]
Yuan, Wen [3 ]
机构
[1] Zhejiang Univ Technol, Dept Appl Math, Hangzhou 310023, Zhejiang, Peoples R China
[2] Renmin Univ China, Sch Informat, Dept Math, Beijing 100872, Peoples R China
[3] Beijing Normal Univ, Sch Math Sci, Minist Educ, Lab Math & Complex Syst, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
Hardy space; Musielak-Orlicz function; Muckenhoupt weight; Interpolation; Atom; Calderon-Zygmund decomposition;
D O I
10.1007/s12220-017-9943-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any p. (0, 1], let H Phi p (Rn) be the Musielak-Orlicz Hardy space associated with the Musielak-Orlicz growth function Phi p, defined by setting, for any x. Rn and t. [0, 8), Phi p(x, t) := {t/log (e + t) + [t(1 + vertical bar x vertical bar)n]1-p when n(1/p-1) is not an element of N boolean OR {0}, {t/log (e + t) + [t(1 + vertical bar x vertical bar)n]1-p when n(1/p-1) is an element of N boolean OR {0}, which is the sharp target space of the bilinear decomposition of the product of the Hardy space H p(Rn) and its dual. Moreover, H Phi 1 (Rn) is the prototype appearing in the real-variable theory of general Musielak-Orlicz Hardy spaces. In this article, the authors find a new structure of the space H Phi p (Rn) by showing that, for any p. (0, 1], H Phi p (Rn) = Hf0 (Rn) + H p Wp (Rn) and, for any p. (0, 1), H Phi p (Rn) = H1(Rn)+ H p Wp (Rn), where H1(Rn) denotes the classical real Hardy space, Hf0 (Rn) the Orlicz-Hardy space associated with the Orlicz function f0(t) := t/log(e + t) for any t. [0,8), and H p Wp (Rn) theweighted Hardy space associated with certain weight function Wp(x) that is comparable to Phi p(x, 1) for any x. Rn. As an application, the authors further establish an interpolation theorem of quasilinear operators based on this new structure.
引用
收藏
页码:2961 / 2983
页数:23
相关论文
共 50 条
  • [21] Riesz Transform Characterizations of Musielak-Orlicz Hardy Spaces
    Yang, Dachun
    Liang, Yiyu
    Luong Dang Ky
    REAL-VARIABLE THEORY OF MUSIELAK-ORLICZ HARDY SPACES, 2017, 2182 : 109 - 144
  • [22] Local Hardy spaces of Musielak-Orlicz type and their applications
    DaChun Yang
    SiBei Yang
    Science China Mathematics, 2012, 55 : 1677 - 1720
  • [23] Good Lambda Inequalities and Musielak-Orlicz Hardy Spaces
    Ferguson, Timothy
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2024, : 251 - 277
  • [24] Maximal Function Characterizations of Musielak-Orlicz Hardy Spaces
    Yang, Dachun
    Liang, Yiyu
    Luong Dang Ky
    REAL-VARIABLE THEORY OF MUSIELAK-ORLICZ HARDY SPACES, 2017, 2182 : 59 - 70
  • [25] DUAL SPACES AND WAVELET CHARACTERIZATIONS OF ANISOTROPIC MUSIELAK-ORLICZ HARDY SPACES
    Liu, Jun
    Haroske, Dorothee D.
    Yang, Dachun
    Yuan, Wen
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2020, 19 (01) : 106 - 131
  • [26] Molecular Characterization of Anisotropic Musielak-Orlicz Hardy Spaces and Their Applications
    Li, Bao De
    Fan, Xing Ya
    Fu, Zun Wei
    Yang, Da Chun
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2016, 32 (11) : 1391 - 1414
  • [27] ESTIMATES FOR PARAMETRIC MARCINKIEWICZ INTEGRALS ON MUSIELAK-ORLICZ HARDY SPACES
    Liu, Xiong
    Li, Baode
    Qiu, Xiaoli
    Li, Bo
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2018, 12 (04): : 1117 - 1147
  • [28] NEW WEAK MARTINGALE HARDY SPACES OF MUSIELAK-ORLICZ TYPE
    Yang, Anming
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2017, 42 (02) : 847 - 857
  • [29] Anisotropic weak Hardy spaces of Musielak-Orlicz type and their applications
    Zhang, Hui
    Qi, Chunyan
    Li, Baode
    FRONTIERS OF MATHEMATICS IN CHINA, 2017, 12 (04) : 993 - 1022
  • [30] Boundedness of fractional integral operators on Musielak-Orlicz Hardy spaces
    Huy, Duong Quoc
    Ky, Luong Dang
    MATHEMATISCHE NACHRICHTEN, 2021, 294 (12) : 2340 - 2354