Gene Editing and Crop Improvement Using CRISPR-Cas9 System

被引:180
作者
Arora, Leena [1 ]
Narula, Alka [1 ]
机构
[1] Jamia Hamdard, Sch Chem & Life Sci, Dept Biotechnol, New Delhi, India
关键词
CRISPR/Cas system; genome editing; nutrition improvement; disease resistance; metabolic engineering; gene expression regulation; CRISPR ribonucleoproteins; CRISPR/CAS9-MEDIATED TARGETED MUTAGENESIS; GUIDED SURVEILLANCE COMPLEX; SITE-DIRECTED MUTAGENESIS; SEQUENCE-SPECIFIC CONTROL; DOUBLE-STRAND BREAKS; CRYSTAL-STRUCTURE; ANALYSIS REVEALS; CAS NUCLEASES; RNA CLEAVAGE; GENOME;
D O I
10.3389/fpls.2017.01932
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Advancements in Genome editing technologies have revolutionized the fields of functional genomics and crop improvement. CRISPR/Cas9 (clustered regularly interspaced short palindromic repeat)-Cas9 is a multipurpose technology for genetic engineering that relies on the complementarity of the guideRNA (gRNA) to a specific sequence and the Cas9 endonuclease activity. It has broadened the agricultural research area, bringing in new opportunities to develop novel plant varieties with deletion of detrimental traits or addition of significant characters. This RNA guided genome editing technology is turning out to be a groundbreaking innovation in distinct branches of plant biology. CRISPR technology is constantly advancing including options for various genetic manipulations like generating knockouts; making precise modifications, multiplex genome engineering, and activation and repression of target genes. The review highlights the progression throughout the CRISPR legacy. We have studied the rapid evolution of CRISPR/Cas9 tools with myriad functionalities, capabilities, and specialized applications. Among varied diligences, plant nutritional improvement, enhancement of plant disease resistance and production of drought tolerant plants are reviewed. The review also includes some information on traditional delivery methods of Cas9-gRNA complexes into plant cells and incorporates the advent of CRISPR ribonucleoproteins (RNPs) that came up as a solution to various limitations that prevailed with plasmid-based CRISPR system.
引用
收藏
页数:21
相关论文
共 135 条
[1]   C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector [J].
Abudayyeh, Omar O. ;
Gootenberg, Jonathan S. ;
Konermann, Silvana ;
Joung, Julia ;
Slaymaker, Ian M. ;
Cox, David B. T. ;
Shmakov, Sergey ;
Makarova, Kira S. ;
Semenova, Ekaterina ;
Minakhin, Leonid ;
Severinov, Konstantin ;
Regev, Aviv ;
Lander, Eric S. ;
Koonin, Eugene V. ;
Zhang, Feng .
SCIENCE, 2016, 353 (6299)
[2]   A new age in functional genomics using CRISPR/Cas9 in arrayed library screening [J].
Agrotis, Alexander ;
Ketteler, Robin .
FRONTIERS IN GENETICS, 2015, 6
[3]   Induced mutations - A new paradigm in plant breeding [J].
Ahloowalia, BS ;
Maluszynski, M .
EUPHYTICA, 2001, 118 (02) :167-173
[4]   Trait stacking via targeted genome editing [J].
Ainley, William M. ;
Sastry-Dent, Lakshmi ;
Welter, Mary E. ;
Murray, Michael G. ;
Zeitler, Bryan ;
Amora, Rainier ;
Corbin, David R. ;
Miles, Rebecca R. ;
Arnold, Nicole L. ;
Strange, Tonya L. ;
Simpson, Matthew A. ;
Cao, Zehui ;
Carroll, Carley ;
Pawelczak, Katherine S. ;
Blue, Ryan ;
West, Kim ;
Rowland, Lynn M. ;
Perkins, Douglas ;
Samuel, Pon ;
Dewes, Cristie M. ;
Shen, Liu ;
Sriram, Shreedharan ;
Evans, Steven L. ;
Rebar, Edward J. ;
Zhang, Lei ;
Gregory, Phillip D. ;
Urnov, Fyodor D. ;
Webb, Steven R. ;
Petolino, Joseph F. .
PLANT BIOTECHNOLOGY JOURNAL, 2013, 11 (09) :1126-1134
[5]   Manipulating the Biosynthesis of Bioactive Compound Alkaloids for Next-Generation Metabolic Engineering in Opium Poppy Using CRISPR-Cas 9 Genome Editing Technology [J].
Alagoz, Yagiz ;
Gurkok, Tugba ;
Zhang, Baohong ;
Unver, Turgay .
SCIENTIFIC REPORTS, 2016, 6
[6]   CRISPR/Cas9-mediated viral interference in plants [J].
Ali, Zahir ;
Abulfaraj, Aala ;
Idris, Ali ;
Ali, Shakila ;
Tashkandi, Manal ;
Mahfouz, Magdy M. .
GENOME BIOLOGY, 2015, 16
[7]   CRISPR-Cas adaptation: insights into the mechanism of action [J].
Amitai, Gil ;
Sorek, Rotem .
NATURE REVIEWS MICROBIOLOGY, 2016, 14 (02) :67-76
[8]   Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts [J].
Andersson, Mariette ;
Turesson, Helle ;
Nicolia, Alessandro ;
Falt, Ann-Sofie ;
Samuelsson, Mathias ;
Hofvander, Per .
PLANT CELL REPORTS, 2017, 36 (01) :117-128
[9]   DNA Replicons for Plant Genome Engineering [J].
Baltes, Nicholas J. ;
Gil-Humanes, Javier ;
Cermak, Tomas ;
Atkins, Paul A. ;
Voytas, Daniel F. .
PLANT CELL, 2014, 26 (01) :151-163
[10]   CRISPR provides acquired resistance against viruses in prokaryotes [J].
Barrangou, Rodolphe ;
Fremaux, Christophe ;
Deveau, Helene ;
Richards, Melissa ;
Boyaval, Patrick ;
Moineau, Sylvain ;
Romero, Dennis A. ;
Horvath, Philippe .
SCIENCE, 2007, 315 (5819) :1709-1712