The periodic wave solutions for the Klein-Gordon-Schrodinger equations

被引:220
作者
Wang, ML [1 ]
Zhou, YB
机构
[1] Henan Univ Sci & Technol, Dept Math & Phys, Luoyang 471039, Peoples R China
[2] Lanzhou Univ, Dept Math, Lanzhou 730000, Peoples R China
关键词
Klein-Gordon-Schrodinger equations; F-expansion method; periodic wave solutions; jacobi elliptic functions; solitary wave solutions;
D O I
10.1016/j.physleta.2003.07.026
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The periodic wave solutions for the Klein-Gordon-Schrodinger equations are obtained by using F-expansion method which can be thought of as a generalization of Jacobi elliptic function expansion method proposed recently. In the limit cases, the solitary wave solutions are obtained as well. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:84 / 92
页数:9
相关论文
共 10 条
[1]   New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations [J].
Fu, ZT ;
Liu, SK ;
Liu, SD ;
Zhao, Q .
PHYSICS LETTERS A, 2001, 290 (1-2) :72-76
[2]   COUPLED KLEIN-GORDON-SCHRODINGER EQUATIONS .2. [J].
FUKUDA, I ;
TSUTSUMI, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1978, 66 (02) :358-378
[3]   Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations [J].
Liu, SK ;
Fu, ZT ;
Liu, SD ;
Zhao, Q .
PHYSICS LETTERS A, 2001, 289 (1-2) :69-74
[4]  
OHTA M, 1996, NONLINEAR ANAL, V27, P445
[5]   The Jacobi elliptic-function method for finding periodic-wave solutions to nonlinear evolution equations [J].
Parkes, EJ ;
Duffy, BR ;
Abbott, PC .
PHYSICS LETTERS A, 2002, 295 (5-6) :280-286
[6]   Exact solutions for a compound KdV-Burgers equation [J].
Wang, ML .
PHYSICS LETTERS A, 1996, 213 (5-6) :279-287
[7]   A new Backlund transformation and multi-soliton solutions to the KdV equation with general variable coefficients [J].
Wang, ML ;
Wang, YM .
PHYSICS LETTERS A, 2001, 287 (3-4) :211-216
[8]   SOLITARY WAVE SOLUTIONS FOR VARIANT BOUSSINESQ EQUATIONS [J].
WANG, ML .
PHYSICS LETTERS A, 1995, 199 (3-4) :169-172
[9]   Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics [J].
Wang, ML ;
Zhou, YB ;
Li, ZB .
PHYSICS LETTERS A, 1996, 216 (1-5) :67-75
[10]  
Xia JN, 2002, APPL MATH MECH-ENGL, V23, P58