Ground-state cooling of a dispersively coupled optomechanical system in the unresolved sideband regime via a dissipatively coupled oscillator

被引:11
作者
Zhang, Yu-Xiang [1 ,2 ,3 ,4 ,5 ,6 ]
Wu, Shengjun [5 ]
Chen, Zeng-Bing [1 ,2 ,3 ,4 ]
Shikano, Yutaka [6 ,7 ,8 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, CAS Ctr Excellence QIQP, Hefei 230026, Anhui, Peoples R China
[4] Univ Sci & Technol China, Synerget Innovat Ctr QIQP, Hefei 230026, Anhui, Peoples R China
[5] Nanjing Univ, Kuang Yaming Honors Sch, Nanjing 210093, Jiangsu, Peoples R China
[6] Natl Inst Nat Sci, Inst Mol Sci, Res Ctr Integrat Mol Syst, 38 Nishigo Naka, Okazaki, Aichi 4448585, Japan
[7] Chapman Univ, Inst Quantum Studies, 1 Univ Dr, Orange, CA 92866 USA
[8] Tokyo Inst Technol, Mat & Struct Lab, 4259 Nagatsuta, Yokohama, Kanagawa 2268503, Japan
基金
中国国家自然科学基金;
关键词
MOTION; NOISE;
D O I
10.1103/PhysRevA.94.023823
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In the optomechanical cooling of a dispersively coupled oscillator, it is only possible to reach the oscillator ground state in the resolved sideband regime, where the cavity-mode linewidth is smaller than the resonant frequency of the mechanical oscillator being cooled. In this paper, we show that the dispersively coupled system can be cooled to the ground state in the unresolved sideband regime using an ancillary oscillator, which has a high quality factor and is coupled to the same optical mode via dissipative interaction. The ancillary oscillator has a resonant frequency close to that of the target oscillator; thus, the ancillary oscillator is also in the unresolved sideband regime. We require only a single blue-detuned laser mode to drive the cavity.
引用
收藏
页数:11
相关论文
共 59 条
[11]   Macroscopic quantum mechanics: theory and experimental concepts of optomechanics [J].
Chen, Yanbei .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2013, 46 (10)
[12]   Introduction to quantum noise, measurement, and amplification [J].
Clerk, A. A. ;
Devoret, M. H. ;
Girvin, S. M. ;
Marquardt, Florian ;
Schoelkopf, R. J. .
REVIEWS OF MODERN PHYSICS, 2010, 82 (02) :1155-1208
[13]   Cooling of a mirror by radiation pressure [J].
Cohadon, PF ;
Heidmann, A ;
Pinard, M .
PHYSICAL REVIEW LETTERS, 1999, 83 (16) :3174-3177
[14]   Optical dilution and feedback cooling of a gram-scale oscillator to 6.9 mK [J].
Corbitt, Thomas ;
Wipf, Christopher ;
Bodiya, Timothy ;
Ottaway, David ;
Sigg, Daniel ;
Smith, Nicolas ;
Whitcomb, Stanley ;
Mavalvala, Nergis .
PHYSICAL REVIEW LETTERS, 2007, 99 (16)
[15]   Optomechanical Dark Mode [J].
Dong, Chunhua ;
Fiore, Victor ;
Kuzyk, Mark C. ;
Wang, Hailin .
SCIENCE, 2012, 338 (6114) :1609-1613
[16]   Optomechanical crystals [J].
Eichenfield, Matt ;
Chan, Jasper ;
Camacho, Ryan M. ;
Vahala, Kerry J. ;
Painter, Oskar .
NATURE, 2009, 462 (7269) :78-82
[17]   Quantum Noise Interference and Backaction Cooling in Cavity Nanomechanics [J].
Elste, Florian ;
Girvin, S. M. ;
Clerk, A. A. .
PHYSICAL REVIEW LETTERS, 2009, 102 (20)
[18]   Storing Optical Information as a Mechanical Excitation in a Silica Optomechanical Resonator [J].
Fiore, Victor ;
Yang, Yong ;
Kuzyk, Mark C. ;
Barbour, Russell ;
Tian, Lin ;
Wang, Hailin .
PHYSICAL REVIEW LETTERS, 2011, 107 (13)
[19]   Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes [J].
Genes, C. ;
Vitali, D. ;
Tombesi, P. ;
Gigan, S. ;
Aspelmeyer, M. .
PHYSICAL REVIEW A, 2008, 77 (03)
[20]   Micromechanical oscillator ground-state cooling via resonant intracavity optical gain or absorption [J].
Genes, C. ;
Ritsch, H. ;
Vitali, D. .
PHYSICAL REVIEW A, 2009, 80 (06)